Double Symmetrical

Geometry Level 4

Find the sum

tan ( a ) tan ( 2 a ) + tan ( 2 a ) tan ( 3 a ) + + tan ( 8 a ) tan ( 9 a ) , \tan (a) \tan (2a) + \tan(2a) \tan(3a) +\cdots+ \tan(8a) \tan(9a),

where a = π 5 . a=\frac{\pi}{5}.


The answer is -10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Adarsh Kumar
Jun 28, 2015

We have that, tan a = tan ( n + 1 ) a tan n a 1 + tan ( n + 1 ) a × tan a n 1 + tan ( n + 1 ) a tan n a = tan ( n + 1 ) a tan n a tan a ( 1 + tan a tan 2 a ) + ( 1 + tan 2 a tan 3 a ) + . . . ( 1 + tan 8 a tan 9 a ) = tan 2 a tan a + tan 3 a tan 2 a + . . . tan 9 a tan 8 a tan a = tan 9 a tan a tan a = 2 tan a tan a = 2 our answer is 2 8 = 10 \tan{a}=\dfrac{\tan{(n+1)a}-\tan{na}}{1+\tan{(n+1)a}\times \tan{an}}\\ \Longrightarrow 1+\tan{(n+1)a}\tan{na}=\dfrac{\tan{(n+1)a}-\tan{na}}{\tan{a}}\\ \Longrightarrow (1+\tan{a}\tan{2a})+(1+\tan{2a}\tan{3a})+...(1+\tan{8a}\tan{9a})\\= \dfrac{\tan{2a}-\tan{a}+\tan{3a}-\tan{2a}+...\tan{9a}-\tan{8a}}{\tan{a}}\\=\dfrac{\tan{9a}-\tan{a}}{\tan{a}}\\=\dfrac{-2 \tan{a}}{\tan{a}}=-2\\ \Longrightarrow \text{our answer is}-2-8=-10 .And done!

Moderator note:

Very creative. Nicely done.

Chew-Seong Cheong
Jun 17, 2015

We note that:

tan π 5 = tan 4 π 5 = tan 6 π 5 = tan 9 π 5 tan 2 π 5 = tan 3 π 5 = tan 7 π 5 = tan 8 π 5 tan 5 π 5 = tan π = 0 \tan{\frac{\pi}{5}} = - \tan{\frac{4\pi}{5}} = \tan{\frac{6\pi}{5}} = - \tan{\frac{9\pi}{5}} \\ \tan{\frac{2\pi}{5}} = - \tan{\frac{3\pi}{5}} = \tan{\frac{7\pi}{5}} = -\tan {\frac{8\pi}{5}} \\ \tan{\frac{5\pi}{5}} = \tan{\pi} = 0

Therefore,

f ( a ) = tan π 5 tan 2 π 5 + tan 2 π 5 tan 3 π 5 + tan 3 π 5 tan 4 π 5 + . . . tan 8 π 5 tan 9 π 5 = tan π 5 tan 2 π 5 tan 2 2 π 5 + tan π 5 tan 2 π 5 + 0 + 0 + tan π 5 tan 2 π 5 tan 2 2 π 5 + tan π 5 tan 2 π 5 = 4 tan π 5 tan 2 π 5 2 tan 2 2 π 5 f(a) = \tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} + \tan{\frac{2\pi}{5}} \tan{\frac{3\pi}{5}} + \tan{\frac{3\pi}{5}} \tan{\frac{4\pi}{5}} + ... \tan{\frac{8\pi}{5}} \tan{\frac{9\pi}{5}} \\ \quad \quad = \tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} - \tan^2{\frac{2\pi}{5}} + \tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} + 0 \\ \quad \quad \quad + 0 + \tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} - \tan^2{\frac{2\pi}{5}} + \tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} \\ \quad \quad = 4\tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} - 2 \tan^2{\frac{2\pi}{5}}

Since π 5 + 2 π 5 + 2 π 5 = π \frac{\pi}{5} + \frac{2\pi}{5} + \frac{2\pi}{5} = \pi , there are three angles of a triangle.

tan π 5 tan 2 2 π 5 = tan π 5 + 2 tan 2 π 5 tan π 5 tan 2 2 π 5 = tan π 5 + 4 tan π 5 1 tan 2 π 5 tan 2 2 π 5 = 1 + 4 1 tan 2 π 5 = 5 tan 2 π 5 1 tan 2 π 5 \Rightarrow \tan{\frac{\pi}{5}} \tan^2{\frac{2\pi}{5}} = \tan{\frac{\pi}{5}} + 2 \tan{\frac{2\pi}{5}} \\ \tan{\frac{\pi}{5}} \tan^2{\frac{2\pi}{5}} = \tan{\frac{\pi}{5}} + \dfrac {4\tan{\frac{\pi}{5}}} {1-\tan^2{\frac{\pi}{5}}} \\ \Rightarrow \tan^2 {\frac {2\pi}{5}} = 1 + \dfrac {4} {1-\tan^2{\frac{\pi}{5}}} = \dfrac {5 - \tan^2{\frac{\pi}{5}}} {1-\tan^2{\frac{\pi}{5}}}

f ( a ) = 4 tan π 5 tan 2 π 5 2 tan 2 2 π 5 = 8 tan 2 π 5 1 tan 2 π 5 10 2 tan 2 π 5 1 tan 2 π 5 = 10 tan 2 π 5 10 1 tan 2 π 5 = 10 \Rightarrow f(a) = 4\tan{\frac{\pi}{5}} \tan{\frac{2\pi}{5}} - 2 \tan^2{\frac{2\pi}{5}} \\ \quad \quad \quad \space = \dfrac {8\tan^2{\frac{\pi}{5}}} {1-\tan^2 {\frac{\pi}{5}}} - \dfrac {10 - 2\tan^2{\frac{\pi}{5}}} {1-\tan^2{\frac{\pi}{5}}} \\ \quad \quad \quad \space = \dfrac {10\tan^2{\frac{\pi}{5}} - 10} {1-\tan^2{\frac{\pi}{5}}} = \boxed{-10}

Moderator note:

Good job with chasing down all of these trigo terms.

Though, given how nice the answer is, one does wonder if there is an alternative approach. For example, we have i = 0 2 tan i π 3 tan ( i + 1 ) π 3 = 3 \sum_{i=0}^2 \tan \frac{ i \pi } { 3 } \tan \frac{ (i+1) \pi } { 3} = -3 and i = 0 6 tan i π 7 tan ( i + 1 ) π 7 = 7 \sum_{i=0}^6 \tan \frac{ i \pi } { 7 } \tan \frac{ (i+1) \pi } { 7} = -7 .

Dheeraj Agarwal
Jun 17, 2015

Write tana as a difference of numbers like tan(2a-a) and expand it accordingly now yoiu will get the value if 1+ (tan2atana)and by this you can find values of other as tana is in the denominator all the other terms cancels out leaving only tan9a and tana then by some manipulations you'll get -10

Moderator note:

Nice work.

Kevin Zhao
Jan 14, 2019

Similar to the explanation of @Adarsh Kumar.

Note that tan x tan y = tan x tan y tan ( x y ) 1 \tan{x}\tan{y}=\frac{\tan{x}-\tan{y}}{\tan(x-y)}-1 Therefore, we have k = 1 8 tan k α tan ( k + 1 ) α = k = 1 8 ( tan ( k + 1 ) α tan k α tan α 1 ) = tan 9 α tan α tan α 8 \sum_{k=1}^{8}{\tan{k\alpha}\tan(k+1)\alpha} =\sum_{k=1}^{8}( \frac{\tan(k+1)\alpha-\tan{k\alpha}}{\tan{\alpha}}-1) =\frac{\tan{9\alpha -\tan\alpha}}{\tan{\alpha}}-8 Since 10 α = 2 π 10\alpha=2\pi , it holds that tan 9 α = tan α \tan{9\alpha}=-\tan{\alpha} . Now we can get the answer: tan 9 α tan α tan α 8 = 2 tan α tan α 8 = 10 \frac{\tan{9\alpha -\tan\alpha}}{\tan{\alpha}}-8=\frac{-2\tan\alpha}{\tan\alpha}-8=\boxed{-10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...