Geometrical Inequalities!

Geometry Level 4

Let x , y , z x, y, z be non-zero real numbers such that x + y + z = x y z x + y + z = xyz , and

x ( 1 y 2 ) ( 1 z 2 ) + y ( 1 z 2 ) ( 1 x 2 ) + z ( 1 x 2 ) ( 1 y 2 ) = k x y z \large\ x(1 - y^2)(1 - z^2) + y(1 - z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = kxyz .

Find the constant positive integer k k satisfying the above equality.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
May 29, 2018

@Calvin Lin , Sir here it is.

I will prove

x ( 1 y 2 ) ( 1 z 2 ) + y ( 1 z 2 ) ( 1 x 2 ) + z ( 1 x 2 ) ( 1 y 2 ) = 4 x y z \large\ x(1 - y^2)(1 - z^2) + y(1 - z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = 4xyz

subject to x + y + z = x y z x + y + z = xyz .

The conclusion is immediate if x y z = 0 , xyz = 0, so we may assume that x , y , z 0 x, y, z \neq 0 .

Dividing through by 4 x y z 4xyz we transform the desired equality into

1 y 2 2 y 1 z 2 2 z + 1 z 2 2 x 1 x 2 2 x + 1 x 2 2 x 1 y 2 2 y = 1 \large\ \frac { 1 - { y }^{ 2 } }{ 2y } \cdot \frac { 1 - { z }^{ 2 } }{ 2z } + \frac { 1 - { z }^{ 2 } }{ 2x } \cdot \frac { 1 - { x }^{ 2 } }{ 2x } + \frac { 1 - { x }^{ 2 } }{ 2x } \cdot \frac { 1 - { y }^{ 2 } }{ 2y } = 1 .

This, along with the condition from the statement, makes us think about the substitutions x = tan A , y = tan B , z = tan C x = \tan A, y = \tan B, z = \tan C , where A , B , C A, B, C are the angles of a triangle. Using the double-angle formula

1 tan 2 u 2 tan u = cot u \large\ \frac { 1 - \tan ^{ 2 }{ u } }{ 2\tan { u } } = \cot { u } ,

we further transform the equality into

cot 2 B cot 2 C + cot 2 C cot 2 A + cot 2 A cot 2 B = 1. \large\ \cot {2B} \cot {2C} + \cot {2C} \cot {2A} + \cot {2A} \cot {2B} = 1.

But this is equivalent to

tan 2 A + tan 2 B + tan 2 C = tan 2 A tan 2 B tan 2 C , \large\ \tan {2A} + \tan {2B} + \tan {2C} = \tan {2A} \tan {2B} \tan {2C},

which follows from tan ( 2 A + 2 B + 2 C ) = tan 2 π = 0 \large\ { \tan{(2A + 2B + 2C)} = \tan {2π} = \boxed 0 } .

So, i just replaced 4 x y z 4xyz by k x y z kxyz and asked for k k .

Why is the conclusion immediate if x y z = 0 xyz= 0 ? I agree it is immediate if x = 0 , y = 0 x = 0 , y = 0 and z = 0 z =0 , but there's a bit more work if we had x = 0 , y + z = 0 x =0 , y+z =0 .

Calvin Lin Staff - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...