Easy Trigonometry

Geometry Level 1

( 1 cos a sin a cos a ) ( 1 cos a + sin a cos a ) = ? \left( \dfrac1{\cos a} - \dfrac{\sin a}{\cos a} \right) \left( \dfrac1{\cos a} + \dfrac{\sin a}{\cos a} \right) = \, ?

Assume a 2 n π ± π 2 . a \neq 2n\pi \pm \dfrac{\pi}{2}.

None of the above 1 2 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

( 1 C o s a S i n a C o s a ) × ( 1 C o s a S i n a C o s a ) (\dfrac{1}{Cos a}-\dfrac{Sin a}{Cos a}) × (\dfrac{1}{Cos a}-\dfrac{Sin a}{Cos a})
( 1 S i n a C o s a ) × ( 1 + S i n a C o s a ) (\dfrac{1-Sin a}{Cos a}) × (\dfrac{1+Sin a}{Cos a})
1 S i n a 2 C o s a 2 \dfrac{1-Sin a^2}{Cos a^2}
C o s a 2 C o s a 2 = 1 \dfrac{Cos a^2}{Cos a^2}=\boxed{1} [As C o s a 2 + S i n a 2 = 1 Cos a^2+ Sin a^2=1 ]

You can't write it as C o s a 2 C o s a 2 \dfrac{Cos a^2}{Cos a^2} You must write it as C o s 2 a C o s 2 a \dfrac{Cos^2 a}{Cos^2 a}

Sumukh Bansal - 3 years, 7 months ago

I think it should've been written like this: (Cosa)^2

Borna Stjepić - 2 years, 4 months ago
Marvin Chong
Feb 12, 2020

It is entirely possible to solve this without knowing any trigonometric identities.

Create a right-angle triangle that has three sides x, y, z (y being the hypotenuse) and an angle a, such that:

sin a = x y \sin { a } = \frac { x }{ y } cos a = z y \cos { a } = \frac { z }{ y } tan a = x z \tan { a } = \frac { x }{ z }

Substitute their equivalents into the problem,

( y z x y z y ) ( y z + x y z y ) = ( y z x z ) ( y z + x z ) = y 2 x 2 z 2 (\frac { y }{ z } -\frac { \frac { x }{ y } }{ \frac { z }{ y } } )(\frac { y }{ z } +\frac { \frac { x }{ y } }{ \frac { z }{ y } } ) = (\frac { y }{ z } -\frac { x }{ z } )(\frac { y }{ z } +\frac { x }{ z } ) = \frac { { y }^{ 2 }-{ x }^{ 2 } }{ { z }^{ 2 } }

This is a right-angle triangle, so the Pythagoras theorem applies, therefore,

x 2 + z 2 = y 2 { x }^{ 2 } + { z }^{ 2 } = { y }^{ 2 } z 2 = y 2 x 2 { z }^{ 2 } = { y }^{ 2 } - { x }^{ 2 }

Thus,

y 2 x 2 z 2 = z 2 z 2 = 1 \frac { { y }^{ 2 }-{ x }^{ 2 } }{ { z }^{ 2 } } = \frac { { z }^{ 2 } }{ { z }^{ 2 } } = \boxed{1}

Wow, This one better!

Ravi Gangani - 1 year ago
Mahdi Raza
Feb 24, 2020

= ( 1 cos a sin a cos a ) ( 1 cos a + sin a cos a ) = ( sec a tan a ) ( sec a + tan a ) = sec 2 a tan 2 a = 1 \begin{aligned} &= \bigg(\frac{1}{\cos a} - \frac{\sin a}{\cos a}\bigg) \bigg(\frac{1}{\cos a} + \frac{\sin a}{\cos a}\bigg) \\ &= (\sec a - \tan a)(\sec a + \tan a) \\ &= \sec^2 a - \tan^2 a \\ &= \boxed{1} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...