Trigonometry (5)

Calculus Level 4

0 π / 2 1 1 + ( cot x ) 5 / 9 d x \large \int_0^{\pi /2} \dfrac1{1 + (\cot x)^{5/9} } \, dx

Compute the integral above. Give your answer to 3 decimal places.

For your final step, use the approximation π = 22 7 \pi = \dfrac{22}7 .


The answer is 0.78571.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 π / 2 1 1 + ( cot x ) 5 / 9 . d x = 0 π / 2 ( sin x ) 5 / 9 ( sin x ) 5 / 9 + ( cos x ) 5 / 9 . d x = 0 π / 2 ( cos x ) 5 / 9 ( sin x ) 5 / 9 + ( cos x ) 5 / 9 . d x . \begin{aligned} \large \displaystyle I = \int_0^{\pi/2} \frac{1}{1 + (\cot x)^{5/9}} . dx = \int_0^{\pi/2} \frac{(\sin x)^{5/9}}{(\sin x)^{5/9} + (\cos x)^{5/9}}.dx\\ \large \displaystyle = \int_0^{\pi/2} \frac{(\cos x)^{5/9}}{(\sin x)^{5/9} + (\cos x)^{5/9}} .dx \end{aligned}.

By Adding the above two integrals, We get 2 I = 0 π / 2 ( cos x ) 5 / 9 + ( sin x ) 5 / 9 ( sin x ) 5 / 9 + ( cos x ) 5 / 9 . d x = 0 π / 2 1. d x = [ x ] 0 π / 2 = π 2 \large \displaystyle \text{By Adding the above two integrals, We get }\\ \large \displaystyle 2I = \int_0^{\pi/2} \frac{(\cos x)^{5/9} + (\sin x)^{5/9}}{(\sin x)^{5/9} + (\cos x)^{5/9}} . dx = \int_0^{\pi/2} 1.dx = \left[x \right]_0^{\pi/2} = \frac{\pi}{2}

2 I = π 2 I = π 4 0.78571 . \large \displaystyle 2I = \frac{\pi}{2}\\ \large \displaystyle \implies I = \frac{\pi}{4} \approx \color{#D61F06}{\boxed{0.78571}}.

Hi! Can you please explain how those two integrals are equal? Thank You!

Ashish Sacheti - 5 years, 1 month ago

Log in to reply

It is a property of integrals that a b f ( x ) d x \int_a^bf(x)dx = a b f ( a + b x ) d x \int_a^bf(a+b-x)dx . Here we use the fact that c o s x = s i n ( π / 2 x ) cosx=sin(\pi/2-x) and the integral property above to prove the equality of the two integrals.

Kyle Coughlin - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...