Easy trigonometry problem

Geometry Level pending

Find the value of sec 5 0 + tan 1 0 \sec 50^{\circ}+\tan 10^{\circ}

1 1 3 \sqrt{3} 5 \sqrt{5} 2 \sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 18, 2020

This problem can be solved using half-angle tangent substitution as follows:

sec 5 0 + tan 1 0 = 1 cos ( 3 0 + 2 0 ) + tan 1 0 = 2 3 cos 2 0 sin 2 0 + tan 1 0 Let t = tan 1 0 = 2 ( 1 + t 2 ) 3 ( 1 t 2 ) 2 t + t = 2 + 3 t 3 t 3 3 2 t 3 t 2 = 2 2 3 t + 3 ( 3 t t 3 ) 3 2 t 3 t 2 As tan 3 0 = 3 t t 3 1 3 t 2 = 1 3 = 2 2 3 t + 1 3 t 2 3 2 t 3 t 2 = 3 ( 3 2 t 3 t 2 ) 3 2 t 3 t 2 = 3 \begin{aligned} \sec 50^\circ + \tan 10^\circ & = \frac 1{\cos (30^\circ + 20^\circ)} + \tan 10^\circ \\ & = \frac 2{\sqrt 3\cos 20^\circ - \sin 20^\circ} + \tan 10^\circ & \small \blue{\text{Let }t=\tan 10^\circ} \\ & = \frac {2(1+t^2)}{\sqrt 3(1-t^2) - 2t} + t \\ & = \frac {2+\sqrt 3t-\sqrt 3t^3}{\sqrt 3-2t - \sqrt 3 t^2} \\ & = \frac {2 - 2\sqrt 3 t + \blue{\sqrt 3(3t-t^3)}}{\sqrt 3-2t - \sqrt 3 t^2} & \small \blue{\text{As }\tan 30^\circ = \frac {3t-t^3}{1-3t^2} = \frac 1{\sqrt 3}} \\ & = \frac {2 - 2\sqrt 3 t + \blue{1-3t^2}}{\sqrt 3-2t - \sqrt 3 t^2} \\ & = \frac {\sqrt 3(\cancel{\sqrt 3-2t - \sqrt 3 t^2})}{\cancel{\sqrt 3-2t - \sqrt 3 t^2}} \\ & = \boxed{\sqrt 3} \end{aligned}

ChengYiin Ong
Apr 18, 2020

sec 5 0 + tan 1 0 \sec 50^{\circ}+\tan 10^{\circ} = cos 1 0 + sin 1 0 sin 4 0 sin 4 0 cos 1 0 =\frac{ \cos 10^{\circ}+\sin 10^{\circ} \sin 40^{\circ}}{ \sin 40^{\circ} \cos 10^{\circ}} = cos ( 6 0 5 0 ) cos 5 0 2 + cos 3 0 2 sin 5 0 2 + sin 3 0 2 =\frac{ \cos (60^{\circ}-50^{\circ})-\frac{\cos 50^{\circ}}{2} +\frac{\cos 30^{\circ}}{2}}{ \frac{\sin 50^{\circ}}{2}+\frac{\sin 30^{\circ}}{2}} = cos 5 0 2 cos 5 0 2 + 3 sin 5 0 2 + 3 sin 3 0 2 sin 5 0 2 + sin 3 0 2 =\frac{ \frac{\cos 50^{\circ}}{2}-\frac{\cos 50^{\circ}}{2} +\sqrt3\frac{\sin 50^{\circ}}{2}+\sqrt3\frac{\sin 30^{\circ}}{2}}{ \frac{\sin 50^{\circ}}{2}+\frac{\sin 30^{\circ}}{2}} = 3 =\sqrt3

Exactly my reasoning, Great!

Mahdi Raza - 1 year, 1 month ago

=1/cos50+tan10 =1/sin40+tan10 =2cos40/sin80+sin10/cos10 =(2cos40+cos80)/cos10 =(cos40+2cos60cos20)/cos10 =(cos40+cos20)/cos10 =2cos30cos10/cos10 =√3

Aly Ahmed - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...