easy with trick

Level pending

really complex


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 12, 2014

The value of i n i^n is cyclical, i 1 = i i^1 = i , i 2 = 1 i^2 = -1 , i 3 = i i^3 = -i , i 4 = 1 i^4=1 , i 5 = i i^5=i , 1 , i , 1 , i . . . -1, -i, 1 , i... .

Let k k be the remainder of n ÷ 4 n\div 4 , then we have:

i n = { 1 , i f k = 0 i , i f k = 1 1 , i f k = 2 i , i f k = 3 i^n=\begin{cases} \space \space 1,\quad if\space k=0 \\ \space \space i,\quad if\space k=1 \\ -1,\quad if\space k=2 \\ -i, \quad if\space k=3 \end{cases} .

Since both 222024 222024 and 32 32 are both divisible by 4 4 ( k = 0 k=0 ), therefore, i 222024 + i 32 = 1 + 1 = 2 i^{222024}+i^{32}=1+1=\boxed{2} .

Eric Hernandez
Aug 9, 2014

i 222024 + i 32 = ( i 4 ) 55506 + ( i 4 ) 8 = 1 8 + 1 55506 = 1 + 1 = 2 i^{222024}+i^{32}=(i^{4})^{55506}+(i^{4})^{8}=1^{8}+1^{55506}=1+1=2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...