Easy x x

Algebra Level 3

x ( x 2 ) + x 2 x 1 ( x 2 ) ( x 2 1 ) ( x + 1 ) 2 \dfrac{x(x-2) + |x-2|}{ |x-1| (x-2)} (x^2 - 1) - (x+1)^2

Simplify the expression above for x > 2 x>2 .

3 2 4 0 1 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Apr 22, 2016

For x > 2 x>2 :

x 2 = x 2 x 1 = x 1 |x-2| = x-2 \quad\quad |x-1| = x-1

Therefore:

x ( x 2 ) + x 2 x 1 ( x 2 ) ( x 2 1 ) ( x + 1 ) 2 = x ( x 2 ) + x 2 ( x 1 ) ( x 2 ) ( x 2 1 ) ( x + 1 ) 2 = ( x 2 ) ( x + 1 ) ( x 1 ) ( x 2 ) ( x 2 1 ) ( x + 1 ) 2 = x + 1 x 1 ( x + 1 ) ( x 1 ) ( x + 1 ) 2 = ( x + 1 ) 2 ( x + 1 ) 2 = 0 \dfrac{x(x-2)+|x-2|}{|x-1|(x-2)}(x^2-1) - (x+1)^2\\ =\dfrac{x(x-2)+x-2}{(x-1)(x-2)}(x^2-1) - (x+1)^2\\ =\dfrac{(x-2)(x+1)}{(x-1)(x-2)}(x^2-1) - (x+1)^2\\ =\dfrac{x+1}{x-1}(x+1)(x-1) - (x+1)^2\\ =(x+1)^2 - (x+1)^2\\ =\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...