An algebra problem by Fidel Simanjuntak

Algebra Level 3

Given that x y = x y = 10 x - y = xy = 10 . Find the value of x 4 + y 4 x^4 + y^4 .


Try another problem on my new set! Warming Up and More Practice


The answer is 14200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( x y ) 2 = x 2 + y 2 2 x y x 2 + y 2 = ( x y ) 2 + 2 x y x 2 + y 2 = 100 + 20 = 120 Now, ( x 2 + y 2 ) 2 = x 4 + y 4 + 2 x 2 y 2 x 4 + y 4 = ( x 2 + y 2 ) 2 2 x 2 y 2 = 14400 200 = 14200 \begin{aligned} ( x-y )^2 & = x^2 + y^2 - 2xy \\ x^2 + y^2 & = (x-y)^2 + 2xy \\ x^2 + y^2 & = 100 + 20 = 120 \\ \text{Now,} \\ (x^2 + y^2)^2 & = x^4 + y^4 + 2x^2y^2 \\ x^4 + y^4 & = (x^2 + y^2)^2 - 2x^2y^2 \\ & = 14400 - 200 = \boxed{14200} \end{aligned}

( x y ) 4 = 1 0 4 x 4 4 x 3 y + 6 x 2 y 2 4 x y 3 + y 4 = 10000 x 4 + y 4 4 x y ( x 2 + y 2 ) + 6 x 2 y 2 = 10000 x 4 + y 4 4 x y ( ( x y ) 2 + 2 x y ) + 6 ( x y ) 2 = 10000 x 4 + y 4 4 ( 10 ) ( 1 0 2 + 2 ( 10 ) ) + 6 ( 10 ) 2 = 10000 x 4 + y 4 40 ( 120 ) + 600 = 10000 x 4 + y 4 4200 = 10000 x 4 + y 4 = 14200 \begin{aligned} (x-y)^4 & = 10^4 \\ x^4-4x^3y+6x^2y^2-4xy^3+y^4 & = 10000 \\ x^4+y^4-4xy\left(x^2+y^2\right)+6x^2y^2 & = 10000 \\ x^4+y^4-4xy\left((x-y)^2+2xy\right)+6(xy)^2 & = 10000 \\ x^4+y^4-4(10)\left(10^2+2(10)\right)+6(10)^2 & = 10000 \\ x^4+y^4-40\left(120\right)+600 & = 10000 \\ x^4+y^4-4200 & = 10000 \\ x^4+y^4 & = \boxed{14200} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...