Easy right?

Algebra Level 5

cyclic 1 2 + a b + a \sum_{\text{cyclic}} \dfrac1{2+ab+a}

Given that a , b a,b and c c are positive reals such that their product is 1, find the minimum value of the expression above.


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lemma : If x , y , z x,y,z are real numbers and x y z = 1 xyz=1 , we have c y c 1 1 + x y + x = 1 \displaystyle\sum_{cyc} \dfrac{1}{1+xy+x}=1

Back to the original problem, let a 4 3 = x ; b 4 3 = y ; c 4 3 = z a^{\frac{4}{3}}=x; b^{\frac{4}{3}}=y; c^{\frac{4}{3}}=z we get x y z = 1 xyz=1 .

Applying AM-GM inequality, we have:

a b + a b + a b + 1 4 a 3 b 3 4 a b + 1 3 4 3 a 4 3 b 4 3 ab+ab+ab+1\ge4\sqrt[4]{a^3b^3}\;\Rightarrow\;ab+\dfrac{1}{3}\ge\dfrac{4}{3}a^{\frac{4}{3}}b^{\frac{4}{3}}

a + a + a + 1 4 a 3 4 a + 1 3 4 3 a 4 3 a+a+a+1\ge4\sqrt[4]{a^3}\;\Rightarrow\;a+\dfrac{1}{3}\ge\dfrac{4}{3}a^{\frac{4}{3}}

Thus, 1 2 + a b + a 1 4 3 + 4 3 a 4 3 b 4 3 + 4 3 a 4 3 = 3 4 . 1 1 + x y + x \dfrac{1}{2+ab+a}\le\dfrac{1}{\dfrac{4}{3}+\dfrac{4}{3}a^{\frac{4}{3}}b^{\frac{4}{3}}+\dfrac{4}{3}a^{\frac{4}{3}}}=\dfrac{3}{4}.\dfrac{1}{1+xy+x}

Similarly, we also get 1 2 + b c + b 3 4 . 1 1 + y z + y \dfrac{1}{2+bc+b}\le\dfrac{3}{4}.\dfrac{1}{1+yz+y} and 1 2 + c a + c 3 4 . 1 1 + z x + x \dfrac{1}{2+ca+c}\le\dfrac{3}{4}.\dfrac{1}{1+zx+x} .

Hence, P = c y c 1 2 + a b + a 3 4 c y c 1 1 + x y + x = 3 4 \displaystyle P=\sum_{cyc}\dfrac{1}{2+ab+a}\le\dfrac{3}{4}\sum_{cyc}\dfrac{1}{1+xy+x}=\dfrac{3}{4} .

So, max P = 3 4 = 0.75 \max P=\dfrac{3}{4}=\boxed{0.75} if and only if a = b = c = 1 a=b=c=1 .

Nice solution.

Aakash Khandelwal - 5 years, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...