Eccentric givens!

Geometry Level 4

Given that in triangle A B C ABC above, A D AD bisects C A B \angle CAB . Find A D AD , given that ( A B ) ( A C ) = 10 (AB) \cdot (AC) = 10 and ( B D ) ( D C ) = 6 (BD) \cdot(DC) = 6 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Manuel Kahayon
May 21, 2016

By stewart's theorem,

( B C ) ( ( A D ) 2 + ( B D ) ( D C ) ) = ( A B ) 2 ( D C ) + ( A C ) 2 ( B D ) (BC)((AD)^2+(BD)(DC)) = (AB)^2(DC)+(AC)^2(BD)

By the angle bisector theorem,

A B B D = A C C D \frac{AB}{BD} = \frac{AC}{CD} or ( A B ) ( D C ) = ( A C ) ( B D ) (AB)(DC) = (AC)(BD)

Substituting this into the above equation gives us

( B C ) ( ( A D ) 2 + ( B D ) ( D C ) ) = ( A B ) ( A B ) ( D C ) + ( A C ) ( A C ) ( B D ) = ( A B ) ( A C ) ( B D ) + ( A B ) ( A C ) ( D C ) = ( A B ) ( A C ) ( ( B D ) + ( C D ) ) = ( A B ) ( A C ) ( B C ) (BC)((AD)^2+(BD)(DC)) = (AB)(AB)(DC)+(AC)(AC)(BD) = (AB)(AC)(BD)+(AB)(AC)(DC) = (AB)(AC)((BD)+(CD)) = (AB)(AC)(BC) (Since B D + C D = B C BD+CD = BC )

Dividing both sides by B C BC gives us

( A D ) 2 + ( B D ) ( D C ) = ( A B ) ( A C ) (AD)^2+(BD)(DC) = (AB)(AC)

Substituting the given values of ( B D ) ( D C ) (BD)(DC) and ( A B ) ( A C ) (AB)(AC) gives us

( A D ) 2 + 6 = 10 (AD)^2+6 = 10 , ( A D ) 2 = 4 (AD)^2 = 4 , A D = 2 AD = \boxed{2}

Useful :)☺☺☺

rakesh kumar - 5 years ago
Rishabh Tiwari
May 23, 2016

BY ANGLE BISECTOR THEOREM ,

(AD)^2 = AB●AC - BD●CD

→ (AD)^2 = 10 - 6 = 4

→ (AD) = 2 .

its quite simple. !

U can refer to Angle bisector theorem wiki . Thank you.

Nishant Sharma
May 23, 2016

This is another problem which can be tackled using sine rule(Atleast I like to approach side-length problems using this principle)

For any \bigtriangleup A B C ABC , we have sin A a = sin B b = sin C c \displaystyle\frac{\sin\angle\,A}{a}=\frac{\sin\angle\,B}{b}=\frac{\sin\angle\,C}{c}

Let \angle B A D = BAD=\angle D A C = α , DAC=\alpha,\angle A D B = β ADB=\beta . Then using sine-rule in \bigtriangleup A B D ABD & A D C ADC we have

sin α B D = sin β A B = sin ( α + β ) A D ( i ) \displaystyle\frac{\sin\alpha}{BD}=\frac{\sin\beta}{AB}=\frac{\sin\left(\alpha+\beta\right)}{AD}\;\;\;\;-\left(i\right)

sin α D C = sin ( π β ) A C = sin ( β α ) A D ( i i ) \displaystyle\frac{\sin\alpha}{DC}=\frac{\sin\left(\pi-\beta\right)}{AC}=\frac{\sin\left(\beta-\alpha\right)}{AD}\;\;\;-\left(ii\right)

Now multiplying ( i ) \left(i\right) & ( i i ) \left(ii\right) respectively, we get

sin 2 α B D D C = sin 2 β A B A C = sin 2 β cos 2 α sin 2 α cos 2 β A D 2 \displaystyle\frac{\sin^2\alpha}{BD\cdot\,DC}=\frac{\sin^2\beta}{AB\cdot\,AC}=\frac{\sin^2\beta\cos^2\alpha-\sin^2\alpha\cos^2\beta}{AD^2}

sin 2 α 6 = sin 2 β 10 = sin 2 β cos 2 α sin 2 α cos 2 β A D 2 ( ) \implies\displaystyle\frac{\sin^2\alpha}{6}=\frac{\sin^2\beta}{10}=\frac{\sin^2\beta\cos^2\alpha-\sin^2\alpha\cos^2\beta}{AD^2}\;\;\;-\left(*\right)

From the first relation we have sin 2 α sin 2 β = 3 5 ( i i i ) \displaystyle\frac{\sin^2\alpha}{\sin^2\beta}=\frac{3}{5}\;\;\;-\left(iii\right)

From last two terms of ( ) \left(*\right) & using ( i i i ) \left(iii\right) we get, after simplifying A D = 2 AD=\boxed{2} .

By the angle bisector theorem, B D = B C A B + A C A B , a n d D C = B C A B + A C A C , B D D C = ( B C A B + A C ) 2 ( A B A C ) . . . . But by stewart’s theorem, A D 2 = ( A B A C ) ( 1 ( B C A B + A C ) 2 ) = ( A B A C ) ( B C A B + A C ) 2 ( A B A C ) A D = 10 6 = 2. \text{By the angle bisector theorem,}\\ BD=\dfrac{BC}{AB+AC}*AB,\ \ and\ \ DC=\dfrac{BC}{AB+AC}*AC,\\ \therefore\ BD*DC=\left (\dfrac{BC}{AB+AC} \right)^2*(AB*AC)....\color{#3D99F6}{***}\\ \text{But by stewart's theorem,}\\ AD^2=(AB*AC)*\left (1- \left (\dfrac{BC}{AB+AC} \right )^2 \right )=(AB*AC) - \left (\dfrac{BC}{AB+AC} \right)^2*(AB*AC)\color{#3D99F6}{***}\\ \therefore\ \ AD=\sqrt{10-6}=2. .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...