A calculus problem by Julian Poon

Calculus Level 5

n = 0 ζ ( n ) ( 3 ) n ! = π A B \large \displaystyle \sum_{n=0}^{\infty} \frac{\zeta^{(n)}(3)}{n!} = \frac{\pi^A}{B}

Where ζ ( n ) ( s ) \zeta^{(n)}(s) is the n n th derivative of the Riemann zeta function and A A and B B are positive integers. Find A + B A+B .

A continuation of this problem can be found here


The answer is 94.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Nov 27, 2018

The n n -derivative of the Riemann Zeta Function is given by:

ζ ( n ) ( s ) = d n d s n k = 1 1 k s \large \displaystyle \zeta^{(n)} (s) = \frac{d^n}{ds^n} \sum_{k=1}^{\infty} \frac{1}{k^s}

ζ ( n ) ( s ) = k = 1 ( 1 ) n [ ln ( k ) ] n k s \color{#20A900} \boxed{ \large \displaystyle \zeta^{(n)} (s) = \sum_{k=1}^{\infty} \frac{(-1)^n [ \ln(k)]^n}{k^s} }

So:

S = n = 0 ζ ( n ) ( 3 ) n ! \large \displaystyle S = \sum_{n=0}^{\infty} \frac{\zeta^{(n)}(3)}{n!}

S = n = 0 k = 1 ( 1 ) n [ ln ( k ) ] n n ! k 3 \large \displaystyle S = \sum_{n=0}^{\infty}\sum_{k=1}^{\infty} \frac{ (-1)^n [\ln(k)]^n}{n! k^3}

S = k = 1 1 k 3 n = 0 [ ln ( k ) ] n n ! \large \displaystyle S = \sum_{k=1}^{\infty} \frac{1}{k^3} \sum_{n=0}^{\infty} \frac{ [-\ln(k)]^n}{n!}

S = k = 1 1 k 3 e ln ( k ) \large \displaystyle S = \sum_{k=1}^{\infty} \frac{1}{k^3} e^{-\ln(k)}

S = k = 1 1 k 4 \large \displaystyle S = \sum_{k=1}^{\infty} \frac{1}{k^4}

S = ζ ( 4 ) = π 4 90 \color{#20A900} \boxed{ \large \displaystyle S = \zeta(4) = \frac{\pi^4}{90} }

So:

A = 4 , B = 90 , A + B = 94 \color{#3D99F6} \large \displaystyle A = 4, B = 90, \boxed{ \large \displaystyle A+B=94 }

that was easy

Nahom Assefa - 2 years, 6 months ago
Wesley Low
Mar 21, 2019

Using a Taylor Series expansion centered about the point s = s 0 s={ s }_{ 0 } , we obtain

ζ ( s ) = n = 1 ζ ( n ) ( s 0 ) n ! ( s s 0 ) n \zeta \left( s \right) =\sum _{ n=1 }^{ \infty }{ \frac { { \zeta }^{ \left( n \right) }\left( { s }_{ 0 } \right) }{ n! } } { \left( s-{ s }_{ 0 } \right) }^{ n }

In order to obtain the form as shown in the question, we can take s 0 = 3 { s }_{ 0 }=3 . Substituting s = 4 s=4 gives ( s s 0 ) n = 1 { \left( s-{ s }_{ 0 } \right) }^{ n }=1 for all n, which gives

ζ ( 4 ) = n = 1 ζ ( n ) ( 3 ) n ! \zeta \left( 4 \right) =\sum _{ n=1 }^{ \infty }{ \frac { { \zeta }^{ \left( n \right) }\left( 3 \right) }{ n! } }

It is known that ζ ( 4 ) = π 4 90 \zeta \left( 4 \right) =\frac { { \pi }^{ 4 } }{ 90 } , hence A + B = 4 + 90 = 94 A+B=4+90=\boxed{94}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...