Eigenman's problem I-15

Geometry Level 3

Find α \alpha in degrees.

Notes: The two red points denote the centers of the two partially drawn circles.


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Aug 5, 2018

Follow the angles, using the isoceles triangles in this figure

Angle α \alpha is equal to 90 3 4 β 90-\dfrac{3}{4}\beta , where β = 64 \beta=64 for this problem

Let the radii of the small circle and big circle be 1 and r r respectively. Since A B AB is a diameter, A D B = 9 0 \angle ADB = 90^\circ . Let B D = a BD=a and A D = b AD=b . Then by cosine rule , we have:

{ a 2 = ( r 1 ) 2 + 1 2 ( r 1 ) cos 6 4 . . . ( 1 ) b 2 = ( r + 1 ) 2 + 1 + 2 ( r + 1 ) cos 6 4 . . . ( 2 ) Note that cos ( 18 0 θ ) = cos θ \begin{cases} a^2 = (r-1)^2 + 1 - 2(r-1)\cos 64^\circ & ...(1) \\ b^2 = (r+1)^2 + 1 {\color{#3D99F6}\ + 2(r+1)\cos 64^\circ} & ...(2) & \small \color{#3D99F6} \text{Note that }\cos (180^\circ - \theta) = - \cos \theta \end{cases}

By Pythagorean theorem , a 2 + b 2 = ( 2 r ) 2 a^2 + b^2 = (2r)^2 :

( 1 ) + ( 2 ) : 4 r 2 = 2 r 2 + 2 + 2 + 4 cos 6 4 r 2 = 2 ( 1 + cos 6 4 ) = 2 ( 1 + 2 cos 2 3 2 1 ) r = 2 cos 3 2 \begin{aligned} (1)+(2): \quad 4r^2 & = 2r^2 + 2 + 2 + 4\cos 64^\circ \\ r^2 & = 2(1+\cos 64^\circ) = 2(1+2\cos^2 32^\circ -1) \\ \implies r & = 2\cos 32^\circ \end{aligned}

Now we note that C O P = 2 α \angle COP = 2\alpha and O C P = 18 0 6 4 2 α = 11 6 2 α \angle OCP = 180^\circ - 64^\circ - 2\alpha = 116^\circ - 2\alpha . By sine rule :

sin ( 11 6 2 α ) 1 = sin 6 4 r Note that sin ( 18 0 θ ) = sin θ sin ( 6 4 + 2 α ) = sin 6 4 cos 3 2 And r = cos 3 2 2 sin ( 3 2 + α ) cos ( 3 2 + α ) = 2 sin 3 2 cos 3 2 cos 3 2 cos ( 5 8 α ) cos ( 3 2 + α ) = cos 5 8 cos ( 2 α 2 6 ) + cos 9 0 = cos 5 8 cos ( 2 α 2 6 ) = cos 5 8 2 α 2 6 = 5 8 α = 42 \begin{aligned} \frac {\color{#3D99F6}\sin (116^\circ - 2\alpha)}1 & = \frac {\sin 64^\circ}{\color{#D61F06}r} & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - \theta) = \sin \theta \\ \color{#3D99F6}\sin (64^\circ + 2\alpha) & = \frac {\sin 64^\circ}{\color{#D61F06}\cos 32^\circ} & \small \color{#3D99F6} \text{And }r = \cos 32^\circ \\ 2\sin (32^\circ + \alpha)\cos (32^\circ + \alpha) & = \frac {2\sin 32^\circ \cos 32^\circ}{\cos 32^\circ} \\ \cos(58^\circ - \alpha)\cos (32^\circ+\alpha) & = \cos 58^\circ \\ \cos (2\alpha - 26^\circ) + \cos 90^\circ & = \cos 58^\circ \\ \cos (2\alpha - 26^\circ) & = \cos 58^\circ \\ \implies 2\alpha - 26^\circ & = 58^\circ \\ \alpha & = \boxed{42}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...