Eigenvalues?

Algebra Level pending

Consider the usual R 2 \mathbb{R} ^2 dot product.

Let γ [ a b c d ] ; a , b , c , d ( R ) \gamma \in \begin{bmatrix}a & b \\c & d \end{bmatrix};a,b,c,d \in \mathbb(R) be a symetric matrix. It's known that:

d e t ( γ ) = 1 det(\gamma)=-1

N ( γ + I ) = L ( ( 1 , 1 ) ) . N( \gamma + I)=L({(1,1)}).

If γ 2 × [ 2 0 ] = [ x y ] \gamma ^2 \times \begin{bmatrix}2 \\0 \end{bmatrix} = \begin{bmatrix}x \\y \end{bmatrix} enter the value of x + y x+y .

Clarifications:

  • N ( A ) N(A) denotes the Null Space of the matrix A;

  • I I denotes the identity matrix;

  • U = L ( v ) U=L(v) denotes the span.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

γ \gamma is a 2 × 2 2\times2 matrix then it has maximum 2 2 eigenvalues.

Since d e t ( γ ) = 1 det(\gamma)=-1 and N ( γ + I ) 0 N( \gamma + I)\neq 0 , 1 1 and 1 -1 are the only eigenvalues of γ \gamma .

γ \gamma is symetric then N ( γ + I ) N( \gamma + I) and N ( γ I ) N( \gamma - I) are orthogonal, giving us that N ( γ I ) = L ( ( 1 , 1 ) ) . N( \gamma - I)=L({(1,-1)}).

Then:

γ 2 × [ 2 0 ] = γ γ ( [ 1 1 ] + [ 1 1 ] ) = γ ( [ 1 1 ] [ 1 1 ] ) = ( [ 1 1 ] + [ 1 1 ] ) = [ 2 0 ] \gamma ^2 \times \begin{bmatrix}2 \\0 \end{bmatrix} = \gamma \gamma (\begin{bmatrix}1 \\1 \end{bmatrix}+\begin{bmatrix}1 \\-1 \end{bmatrix})=\gamma (\begin{bmatrix}1 \\1 \end{bmatrix}-\begin{bmatrix}1 \\-1 \end{bmatrix})=(\begin{bmatrix}1 \\1 \end{bmatrix}+\begin{bmatrix}1 \\-1 \end{bmatrix})=\begin{bmatrix}2 \\0 \end{bmatrix}

So the answer is 2 + 0 = 2 2+0=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...