Eigenvalues & Eigenvectors

Algebra Level 3

True or false :

Let A : V V A:V\rightarrow V and B : V V B:V\rightarrow V be linear operators on a vector space V V over a field F F .

If v V \mathbf{v}\in V is an eigenvector of A A corresponding to λ F \lambda\in F , then v \mathbf{v} is an eigenvector of B A A λ B BA-A-\lambda B corresponding to λ F -\lambda\in F , for any B B .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Stephen Pablo
May 22, 2016

This is a true statement.

Since v \mathbf{v} is an eigenvector of A A corresponding to λ \lambda , then we know that A v = λ v A\mathbf{v}=\lambda\mathbf{v} .

We want to show that ( B A A λ B ) v = λ v (BA-A-\lambda B)\mathbf{v}=-\lambda\mathbf{v} .

Observe:

( B A A λ B ) v = B A v A v λ B v = B ( A v ) λ v λ B v (BA-A-\lambda B)\mathbf{v}=BA\mathbf{v}-A\mathbf{v}-\lambda B\mathbf{v}\ = B(A\mathbf{v})-\lambda\mathbf{v}-\lambda B\mathbf{v}

= B ( λ v ) λ v λ B v = λ B v λ v λ B v = λ v . = B(\lambda\mathbf{v})-\lambda\mathbf{v}-\lambda B\mathbf{v} = \lambda B\mathbf{v}-\lambda\mathbf{v}-\lambda B\mathbf{v} = -\lambda\mathbf{v}.

Thus, ( B A A λ B ) v = λ v (BA-A-\lambda B)\mathbf{v}=-\lambda\mathbf{v} , so v \mathbf{v} is an eigenvector of B A A λ B BA-A-\lambda B corresponding to λ -\lambda .

Therefore, if v \mathbf{v} is an eigenvector of A A corresponding to λ \lambda , then v \mathbf{v} is an eigenvector of B A A λ B BA-A-\lambda B corresponding to λ -\lambda , for any B : V V B: V\rightarrow V .

Awesome problem and solution, Stephen.

Pranshu Gaba - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...