EIGHT is not 8

E I G H T ÷ E \color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T\color{#333333}\div\color{#20A900}E leaves remainder I . \color{#3D99F6}I.
E I G H T ÷ I \color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T\color{#333333}\div\color{#3D99F6}I leaves remainder G . \color{#D61F06}G.
E I G H T ÷ G \color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T\color{#333333}\div\color{#D61F06}G leaves remainder H . \color{#E81990}H.
E I G H T ÷ H \color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T\color{#333333}\div\color{#E81990}H leaves remainder 0. 0.
E I G H T ÷ T \color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T\color{#333333}\div\color{#BA33D6}T leaves remainder 0. 0.

Every letter represents a distinct, single digit. There are some possible numbers for E I G H T \overline{\color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T} .

What is the sum of these possible numbers?


Here is another problem like this.


The answer is 181530.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Dec 13, 2017
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
for E in range(1,10):
  for I in range(1,10):
    for G in range(1,10):
      for H in range(1,10):
        for T in range(1,10):
          if len(set([E,I,G,H,T])) == 5:
            n = (((E*10+I)*10+G)*10+H)*10+T
            r1 = n % E
            r2 = n % I
            r3 = n % G
            r4 = n % H
            r5 = n % T
            if (r1 == I) and (r2 == G) and (r3 == H) and (r4 == 0) and (r5 == 0):
                print(n)

Output:

1
2
87215
94315

Because of the conditions on the remainders, it can be said that 0 < H < G < I < E 9 0<H<G<I<E \leq 9 . This will substantially reduce the search space. Further, all digits are non-zero and less than 10.

Thus, it could be encoded as

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
   for E=1:9
      for I=1:(E-1)
         for G=1:(I-1)
            for H=1:(G-1)
               for T=setdiff(1:9,[E I G H])
                  n = 10000*E+1000*I+100*G+10*H+T;
                  c1 = (mod(n,E)==I);
                  c2 = (mod(n,I)==G);
                  c3 = (mod(n,G)==H);
                  c4 = (mod(n,H)==0);
                  c5 = (mod(n,T)==0);
                  if (all([c1 c2 c3 c4 c5]))
                     n
                  end
               end
            end
         end
      end
   end

Output:

1
2
n = 87215
n = 94315

Janardhanan Sivaramakrishnan - 3 years, 5 months ago
Md Mehedi Hasan
Dec 11, 2017

E I G H T \overline{\color{#20A900}E\color{#3D99F6}I\color{#D61F06}G\color{#E81990}H\color{#BA33D6}T} represented by only two number. They are 87215 87215 and 94315 94315 which follow above condition.

So the sum is 87215 + 94315 = 181530 87215+94315=\boxed{181530}

But how did u found it

Abhinav Shripad - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...