Either Best or waste

Algebra Level 5

Determine the greatest value of the sum M = x y + y z + z x M = xy + yz + zx where x x , y y , and z z are real numbers satisfying the following condition x 2 + 2 y 2 + 5 z 2 = 22 x^2 + 2y^2 + 5z^2 = 22 .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Priyanshu Mishra
Aug 23, 2016

Here we go:

We have

( x y z ) 2 + ( y 2 z ) 2 0 (x - y - z)^2 + (y - 2z)^2 \ge 0 x , y , z R \forall x, y, z \in R

x 2 + 2 y 2 + 5 z 2 2 x y 2 y z 2 x z 0 \Leftrightarrow x^2+2y^2+5z^2 -2xy-2yz-2xz \ge 0

x 2 + 2 y 2 + 5 z 2 2 x y + 2 y z + 2 x z \Leftrightarrow x^2+2y^2+5z^2 \ge 2xy+2yz+2xz

2 ( x y + y z + x z ) 22 \Leftrightarrow 2(xy + yz + xz) \le 22

x y + y z + x z 11 \Leftrightarrow xy + yz + xz \le 11

So, Max ( x y + y z + x z ) = 11 (xy + yz + xz ) = \boxed{11} .

I want more good solutions. So, please post them.

Thnx bro,NICE solution

genis dude - 4 years, 9 months ago
Dragan Marković
Aug 24, 2016

We have that x 2 + y 2 + z 2 > = x y + y z + z x x^2+y^2+z^2>=xy+yz+zx or simply ( x y ) 2 + ( y z ) 2 + ( z x ) 2 > = 0 (x-y)^2+(y-z)^2+(z-x)^2>=0

Transforming the given condition we get: ( x y ) 2 + ( y z ) 2 + ( z x ) 2 + 2 M x 2 (x-y)^2+(y-z)^2+(z-x)^2+2M-x^2 now by inequality that expression is bigger than 2 M x 2 2M-x^2 or 22 > = 2 M x 2 22>=2M-x^2 now we just minimize x and get the wanted result 11

Problems with latex on the phone :0

Dragan Marković - 4 years, 9 months ago

Log in to reply

Thanks for the short solution.

And for the latex; brackets are not entered correctly. Please check.

Priyanshu Mishra - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...