Determine the greatest value of the sum M = x y + y z + z x where x , y , and z are real numbers satisfying the following condition x 2 + 2 y 2 + 5 z 2 = 2 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thnx bro,NICE solution
We have that x 2 + y 2 + z 2 > = x y + y z + z x or simply ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 > = 0
Transforming the given condition we get: ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 + 2 M − x 2 now by inequality that expression is bigger than 2 M − x 2 or 2 2 > = 2 M − x 2 now we just minimize x and get the wanted result 11
Problems with latex on the phone :0
Log in to reply
Thanks for the short solution.
And for the latex; brackets are not entered correctly. Please check.
Problem Loading...
Note Loading...
Set Loading...
Here we go:
We have
( x − y − z ) 2 + ( y − 2 z ) 2 ≥ 0 ∀ x , y , z ∈ R
⇔ x 2 + 2 y 2 + 5 z 2 − 2 x y − 2 y z − 2 x z ≥ 0
⇔ x 2 + 2 y 2 + 5 z 2 ≥ 2 x y + 2 y z + 2 x z
⇔ 2 ( x y + y z + x z ) ≤ 2 2
⇔ x y + y z + x z ≤ 1 1
So, Max ( x y + y z + x z ) = 1 1 .
I want more good solutions. So, please post them.