El Niño integral

Calculus Level 5

1 2 x 2 x 2 + 5 x + 7 d x = A B ln ( C D ) + E tan 1 ( F G ) H I J tan 1 ( K L ) M N \int_{1}^{2} \dfrac{x}{2x^2+5x+7} \, dx = \frac{A}{B} \ln\left(\frac{C}{D}\right)+\frac{E\tan^{-1}\left(\frac{F}{\sqrt{G}}\right)}{H\sqrt{I}} - \frac{J\tan^{-1}\left(\frac{K}{\sqrt{L}} \right) }{M\sqrt{N}}

The equation above holds true for positive integers A , B , C , D , E , F , G , H , I , J , K , L , M A,B,C,D,E,F,G,H,I,J,K,L,M and N N such that gcd ( A , B ) = gcd ( C , D ) = gcd ( E , F ) = gcd ( K , L ) = gcd ( J , M ) = 1 , \gcd(A,B) = \gcd(C,D) = \gcd(E,F) = \gcd(K,L) = \gcd(J,M ) = 1, with I I and N N square-free.

Find A + B + C + D + E + F + G + H + I + J + K + L + M + N A+B+C+D+E+F+G+H+I+J+K+L+M+N .


The answer is 204.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 21, 2018

I = 1 2 x 2 x 2 + 5 x + 7 d x = 1 4 1 2 4 x + 5 5 2 x 2 + 5 x + 7 d x = 1 4 ln ( 2 x 2 + 5 x + 7 ) 1 2 5 8 1 2 d x x 2 + 5 2 x + 7 2 = 1 4 ln ( 25 14 ) 5 8 1 2 d x ( x + 5 4 ) 2 + 31 16 = 1 4 ln ( 25 14 ) 5 8 31 4 tan 1 ( x + 5 4 31 4 ) 1 2 = 1 4 ln ( 25 14 ) 5 2 31 tan 1 ( 4 x + 5 31 ) 1 2 = 1 4 ln ( 25 14 ) + 5 2 31 [ tan 1 ( 9 31 ) tan 1 ( 13 31 ) ] \begin{aligned} I & = \int_1^2 \frac x{2x^2+5x+7}dx \\ & = \frac 14 \int_1^2 \frac {4x+5-5}{2x^2+5x+7}dx \\ & = \frac 14 \ln(2x^2+5x+7)\bigg|_1^2 - \frac 58\int_1^2 \frac {dx}{x^2+\frac 52x + \frac 72} \\ & = \frac 14 \ln\left(\frac {25}{14}\right) - \frac 58\int_1^2 \frac {dx}{\left(x+\frac 54\right)^2 + \frac {31}{16}} \\ & = \frac 14 \ln\left(\frac {25}{14}\right) - \frac 5{8 \cdot \frac {\sqrt{31}}4} \tan^{-1}\left(\frac {x + \frac 54}{\frac {\sqrt{31}}4} \right)\bigg|_1^2 \\ & = \frac 14 \ln\left(\frac {25}{14}\right) - \frac 5{2\sqrt{31}} \tan^{-1}\left(\frac {4x + 5}{\sqrt{31}} \right)\bigg|_1^2 \\ & = \frac 14 \ln\left(\frac {25}{14}\right) + \frac 5{2\sqrt{31}} \left[\tan^{-1}\left(\frac 9{\sqrt{31}}\right) - \tan^{-1}\left(\frac {13}{\sqrt{31}}\right) \right] \end{aligned}

Therefore, A + B + C + D + E + F + G + H + I + J + K + L + M + N = 1 + 4 + 25 + 14 + 5 + 9 + 31 + 2 + 31 + 5 + 13 + 31 + 2 + 31 = 204 A+B+C+D+E+F+G+H+I+J+K+L+M+N=1+4+25+14+5+9+31+2+31+5+13+31+2+31=\boxed{204} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...