Electric Christmas Tree

In the above circuit shaped like a Christmas tree, the 17 tiny grey rectangles are all resistors with identical resistance 1 ohm. (Light grey line segments are not part of the circuit.)

The effective resistance across A and B can be expressed as x y \dfrac{x}{y} ohms, where x x and y y are coprime positive integers. Find x + y x+y . (Your answer should be three digits long)


Like this? See another related problem here .


The answer is 623.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Darryl Dennis
Dec 22, 2019

The principles of Thevenin,s theorem can be applied in order to simplify the calculation for the total resistance across the entire circuit between A and B. By considering only a portion of the circuit at a time and then using the calculated equivalent resistance between selected points in subsequent calculations the circuit can be dealt with in manageable pieces.

The resulting total resistance can be calculated by applying these expressions

Resistors in Series R T o t a l = R 1 + R 2 + R 3 + . . . { R }_{ Total }={ R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }+...

Resistors in Parallel
R T o t a l = R 1 R 2 R 3 . . . { R }_{ Total }={ R }_{ 1 }||{ R }_{ 2 }||{ R }_{ 3 }||... Using || to indicate parallel resistances.

R T o t a l = R 1 R 2 . . . R 1 + R 2 + . . . { R }_{ Total }=\frac { { R }_{ 1 }{ R }_{ 2 }... }{ { R }_{ 1 }+{ R }_{ 2 }+... }

Beginning at the top of the diagram.

R 2 R 3 = R 2 R 3 R 2 + R 3 = 1 1 1 + 1 = 1 2 Ω { R }_{ 2 }||{ R }_{ 3 }=\frac { { R }_{ 2 }{ R }_{ 3 } }{ { R }_{ 2 }+{ R }_{ 3 } } =\frac { 1*1 }{ 1+1 } =\frac { 1 }{ 2 } \Omega

R t o p = R R 2 R 3 + R 1 + R 4 = 1 2 + 1 + 1 = 5 2 Ω { R }_{ top }={ R }_{ R2||R3 }+R1+R4=\frac { 1 }{ 2 } +1+1=\frac { 5 }{ 2 } \Omega

Total equivalent resistance between points E and F considering only resistors. R1,R2,R3,R4,R5

R E F = R t o p R 5 = 5 2 5 2 + 1 = 5 2 7 2 = 5 7 Ω { R }_{ EF }={ R }_{ top }||{ R }_{ 5 }=\frac { \frac { 5 }{ 2 } }{ \frac { 5 }{ 2 } +1 } =\frac { \frac { 5 }{ 2 } }{ \frac { 7 }{ 2 } } =\frac { 5 }{ 7 } \Omega

R D G = ( R E F + R 6 ) R 7 = ( R E F + R 7 ) R 7 ( R E F + R 7 ) + R 7 = 5 / 7 + 1 5 / 7 + 1 + 1 = 12 / 7 19 / 7 = 12 19 Ω { R }_{ DG }=({ R }_{ EF }+{ R }_{ 6 })||{ R }_{ 7 }=\frac { { (R }_{ EF }+{ R }_{ 7 })*{ R }_{ 7 } }{ { (R }_{ EF }+{ R }_{ 7 })+{ R }_{ 7 } } =\frac { { 5 }/{ 7 }+1 }{ { 5 }/{ 7 }+1+1 } =\frac { { 12 }/{ 7 } }{ { 19 }/{ 7 } } =\frac { 12 }{ 19 } \Omega

R 12 + R 13 = 2 Ω { R }_{ 12 }+{ R }_{ 13 }=2\Omega

R U n d e r l e f t = ( R 12 + R 13 ) R 14 = 2 3 Ω { R }_{ Underleft }=({ R }_{ 12 }+{ R }_{ 13 })||{ R }_{ 14 }=\frac { 2 }{ 3 } \Omega

R U n d e r r i g h t = ( R 15 + R 16 ) R 17 = 2 3 Ω { R }_{ Underright }=({ R }_{ 15}+{ R }_{ 16 })||{ R }_{ 17 }=\frac { 2 }{ 3 } \Omega

R 8 R 9 = 1 2 Ω { R }_{ 8 }||{ R }_{ 9 }=\frac { 1 }{ 2 } \Omega

R A B = R u n d e r l e f t + R 10 + R D G + R R 8 R 9 + R 11 + R u n d e r r i g h t = 2 3 + 1 + 12 19 + 1 2 + 1 + 2 3 { R }_{ AB }={ R }_{ underleft }+{ R }_{ 10 }+{ R }_{ DG }+{ R }_{ R8||R9 }+{ R }_{ 11 }+{ R }_{ underright }=\frac { 2 }{ 3 } +1+\frac { 12 }{ 19 } +\frac { 1 }{ 2 } +1+\frac { 2 }{ 3 }

L C D = 3 19 2 = 114 LCD=3\ast19\ast2=114

R A B = 76 114 + 114 114 + 72 114 + 57 114 + 114 114 + 276 114 = x y = 509 114 Ω { R }_{ AB }=\frac { 76 }{ 114 } +\frac { 114 }{ 114 } +\frac { 72 }{ 114 } +\frac { 57 }{ 114 } +\frac { 114 }{ 114 } +\frac { 276 }{ 114 } =\frac { x }{ y } =\frac { 509 }{ 114 } \Omega

answer x+y = 509+114 = 623

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...