Elegance is the key!

How many pairs of positive integers ( m , n ) (m, n) that satisfy m n + 3 m 8 n = 59 mn + 3m - 8n = 59 ?

4 3 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

m n + 3 m 8 n 24 = 59 24 m ( n + 3 ) 8 ( n + 3 ) = 35 = 7 × 5 ( m 8 ) ( n + 3 ) = 35 = 7 × 5 mn+3m-8n-24=59-24 \implies m(n+3)-8(n+3)=35=7 \times 5 \implies (m-8)(n+3)=35=7 \times 5

{ m 8 = 7 m = 15 n + 3 = 5 n = 2 \begin{cases} m-8=7 \implies m=15\\ n+3=5 \implies n=2 \\ \end{cases}

{ m 8 = 5 m = 13 n + 3 = 7 n = 4 \begin{cases} m-8=5 \implies m=13\\ n+3=7 \implies n=4 \\ \end{cases}

{ m 8 = 1 m = 9 n + 3 = 35 n = 32 \begin{cases} m-8=1 \implies m=9\\ n+3=35 \implies n=32 \\ \end{cases}

{ m 8 = 35 m = 43 n + 3 = 1 n = 2 \begin{cases} m-8=35 \implies m=43\\ n+3=1 \implies n=-2 \\ \end{cases}

only the last case gives a negative integer for n n , which is not acceptable.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...