Elegant arctan \arctan

Calculus Level 4

0 arctan ( 1 x 2 ) d x = A π B C \int_0^\infty \arctan \left(\frac{1}{x^2}\right) \text{d}x=\frac{\sqrt{A}\pi^B}{C}

The equation above is true for positive integers A , B , C A,B,C . Find min ( A + B + C ) \text{min}\left(A+B+C\right)


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hardik Kalra
Sep 5, 2019

I have come up with an elementary approach to solve this integral (no feynman’s, infinite series etc.)

I = 0 arctan ( 1 x 2 ) d x = \int_0^{\infty} \arctan(\frac{1}{x^2})dx

Let u = 1 x u = \frac{1}{x} and then setting u = x u = x ,

I = 0 a r c t a n ( x 2 ) x 2 d x = \int_0^{\infty} \frac{arctan(x^2)}{x^2}dx

Taking a r c t a n ( x 2 ) arctan(x^2) as the first function and 1 x 2 \frac{1}{x^2} as the second one in integration by parts,

I = [ arctan ( x 2 ) 1 x 2 d x + 2 1 + x 4 d x ] 0 = [\arctan(x^2) \int \frac{1}{x^2}dx + \int \frac{2}{1+x^4}dx]_0^{\infty}

First term approaches 0 as x 0 x \to 0 or x x \to \infty . The second term can be solved through partial fraction decomposition or trig substitution.

The answer comes out to be 2 π 2 \frac{\sqrt{2}\pi}{2}

Chew-Seong Cheong
Aug 27, 2019

Similar solution with @Aaghaz Mahajan 's

I ( a ) = 0 tan 1 ( a x 2 ) d x I ( a ) a = 0 x 2 x 4 + a 2 d x = 1 2 0 1 x 2 + i a + 1 x 2 i a d x where i = 1 denotes the imaginary unit. = 1 2 [ 1 i a tan 1 ( x i a ) + 1 i a tan 1 ( x i a ) ] 0 = π 4 [ 1 i a + 1 i a ] = π 2 2 a Integrate both sides w.r.t. a I ( a ) = π 2 a + C where C is the constant of integration. I ( a ) = π 2 a Since I ( 0 ) = 0 C = 0 I ( 1 ) = 0 tan 1 ( 1 x 2 ) d x = π 2 = 2 π 2 \begin{aligned} I(a) & = \int_0^\infty \tan^{-1} \left(\frac a{x^2} \right) dx \\ \frac {\partial I(a)}{\partial a} & = \int_0^\infty \frac {x^2}{x^4 + a^2} dx \\ & = \frac 12 \int_0^\infty \frac 1{x^2 + {\color{#3D99F6}i} a} + \frac 1{x^2-{\color{#3D99F6}i} a} dx & \small \color{#3D99F6} \text{where }i = \sqrt{-1} \text{ denotes the imaginary unit.} \\ & = \frac 12 \left[\frac 1{\sqrt{ia}} \tan^{-1} \left(\frac x{\sqrt{ia}} \right) + \frac 1{\sqrt{-ia}} \tan^{-1} \left(\frac x{\sqrt{-ia}} \right) \right]_0^\infty \\ & = \frac \pi 4 \left[\frac 1{\sqrt{ia}} + \frac 1{\sqrt{-ia}} \right] = \frac \pi {2\sqrt{2a}} & \small \color{#3D99F6} \text{Integrate both sides w.r.t. }a \\ \implies I(a) & = \frac \pi {\sqrt 2}\sqrt a + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ I(a) & = \frac \pi {\sqrt 2}\sqrt a & \small \color{#3D99F6} \text{Since }I(0) = 0 \implies C = 0 \\ \implies I(1) & = \int_0^\infty \tan^{-1} \left(\frac 1{x^2} \right) dx = \frac \pi {\sqrt 2} = \frac {\sqrt 2\pi}2 \end{aligned}

Therefore, min ( A + B + C ) = 1 + 2 + 2 = 5 \min (A+B+C) = 1+2+2 = \boxed 5 .

Aaghaz Mahajan
Aug 27, 2019

Let

I ( a ) = 0 arctan ( a x 2 ) d x I\left(a\right)=\int_0^{\infty}\arctan\left(\frac{a}{x^2}\right)dx

So,

I ( a ) = 0 d x ( x 2 + a 2 x 2 ) I'\left(a\right)=\int_0^{\infty}\frac{dx}{\left(x^2+\frac{a^2}{x^2}\right)}

Putting x = a t \displaystyle x=\sqrt{a}t we get

I ( a ) = 1 a 0 d t ( t 2 + 1 t 2 ) I'\left(a\right)=\frac{1}{\sqrt{a}}\int_0^{\infty}\frac{dt}{\left(t^2+\frac{1}{t^2}\right)}

And so,

I ( a ) = π 2 a 2 I'\left(a\right)=\frac{\pi}{2\sqrt{a}\sqrt{2}}

Now, integrating and using I ( 0 ) = 0 \displaystyle I\left(0\right)=0 we get

I ( a ) = π a 2 I\left(a\right)=\pi\sqrt{\frac{a}{2}}

Thus, making the answer

I ( 1 ) = π 2 = 2 π 1 2 I\left(1\right)=\frac{\pi}{\sqrt{2}}=\frac{\sqrt{2}\pi^1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...