Find the sum of all the possible values of x y , where x and y are positive integers satisfying
( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) = 4 ( 1 + x y ) + 1 4 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given expression can be simplified to ( x + 1 ) 2 ( y − 1 ) 2 = 1 4 4 . Since x , y are positive integers, therefore ( x + 1 ) ( y − 1 ) = 1 2 . Considering all the factors of 1 2 , we get the pairs ( x , y ) as ( 1 , 7 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 5 , 3 ) , ( 1 1 , 2 ) , yielding the values of the product x y as 7 , 1 0 , 1 2 , 1 5 , 2 2 , whose sum is 6 6 .
Problem Loading...
Note Loading...
Set Loading...
Similar solution as @Alak Bhattacharya's
( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) x 2 y 2 + x 2 + y 2 + 1 + 2 x − 2 y − 2 x 2 y + 2 x y 2 − 4 x y x 2 y 2 − 2 x 2 y + 2 x y 2 + x 2 + y 2 − 4 x y + 2 x − 2 y − 1 4 3 = 4 ( 1 + x y ) + 1 4 0 = 1 4 4 = 0
Assume that the left-hand side of the equation above as:
L H S = ( x 2 + a x + b ) ( y 2 + c y + d ) + k = x 2 y 2 + c x 2 y + a x y 2 + d x 2 + b y 2 + a c x y + a d x + b c y + b d + k
Equating the coefficients, we have c = − 2 , a = 2 , d = 1 , and b = 1 , then a c = − 4 , a d = 2 , and b c = − 2 are correct and b d = 1 , ⟹ k = − 1 4 4 . Now we have:
( x 2 + 2 x + 1 ) ( y 2 − 2 y + 1 ) − 1 4 4 ( x + 1 ) 2 ( y − 1 ) 2 ( x + 1 ) ( y − 1 ) = 0 = 1 4 4 = 1 2
Since 1 2 = 2 2 × 3 , there are ( 2 + 1 ) ( 1 + 1 ) = 6 solutions as follows:
1 × 1 2 = 1 2 2 × 6 = 1 2 3 × 4 = 1 2 4 × 3 = 1 2 6 × 2 = 1 2 1 2 × 1 = 1 2 ⟹ x = 0 , y = 1 3 ⟹ x = 1 , y = 7 ⟹ x = 2 , y = 5 ⟹ x = 3 , y = 4 ⟹ x = 5 , y = 3 ⟹ x = 1 1 , y = 2 Unacceptable ⟹ x y = 7 ⟹ x y = 1 0 ⟹ x y = 1 2 ⟹ x y = 1 5 ⟹ x y = 2 2
Therefore the sum of all possible x y is 7 + 1 0 + 1 2 + 1 5 + 2 2 = 6 6 .