Elegant way to factor?

Find the sum of all the possible values of x y xy , where x x and y y are positive integers satisfying

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) + 140 (x^2+1)(y^2+1) + 2(x-y)(1-xy) = 4(1+xy)+140


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 26, 2020

Similar solution as @Alak Bhattacharya's

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) + 140 x 2 y 2 + x 2 + y 2 + 1 + 2 x 2 y 2 x 2 y + 2 x y 2 4 x y = 144 x 2 y 2 2 x 2 y + 2 x y 2 + x 2 + y 2 4 x y + 2 x 2 y 143 = 0 \begin{aligned} (x^2+1)(y^2+1)+2(x-y)(1-xy) & = 4(1+xy) + 140 \\ x^2y^2 + x^2 + y^2 + 1 + 2x - 2y - 2x^2y + 2xy^2 -4xy & = 144 \\ x^2y^2 - 2x^2y + 2xy^2 +x^2 + y^2 -4xy + 2x - 2y - 143 & = 0 \end{aligned}

Assume that the left-hand side of the equation above as:

L H S = ( x 2 + a x + b ) ( y 2 + c y + d ) + k = x 2 y 2 + c x 2 y + a x y 2 + d x 2 + b y 2 + a c x y + a d x + b c y + b d + k \begin{aligned} LHS & = (x^2 + ax + b)(y^2 + cy+d) + k \\ & = x^2y^2 + cx^2y + axy^2 + dx^2 + by^2 + acxy + adx+bcy + bd + k \end{aligned}

Equating the coefficients, we have c = 2 c=-2 , a = 2 a=2 , d = 1 d=1 , and b = 1 b=1 , then a c = 4 ac = -4 , a d = 2 ad = 2 , and b c = 2 bc=-2 are correct and b d = 1 bd=1 , k = 144 \implies k = -144 . Now we have:

( x 2 + 2 x + 1 ) ( y 2 2 y + 1 ) 144 = 0 ( x + 1 ) 2 ( y 1 ) 2 = 144 ( x + 1 ) ( y 1 ) = 12 \begin{aligned} (x^2 + 2x + 1)(y^2-2y+1) - 144 & = 0 \\ (x+1)^2(y-1)^2 & = 144 \\ (x+1)(y-1) & = 12 \end{aligned}

Since 12 = 2 2 × 3 12=2^2\times 3 , there are ( 2 + 1 ) ( 1 + 1 ) = 6 (2+1)(1+1)=6 solutions as follows:

1 × 12 = 12 x = 0 , y = 13 Unacceptable 2 × 6 = 12 x = 1 , y = 7 x y = 7 3 × 4 = 12 x = 2 , y = 5 x y = 10 4 × 3 = 12 x = 3 , y = 4 x y = 12 6 × 2 = 12 x = 5 , y = 3 x y = 15 12 × 1 = 12 x = 11 , y = 2 x y = 22 \begin{array} {lll} 1 \times 12 = 12 & \implies \red{x = 0}, y = 13 & \small \red{\text{Unacceptable}} \\ 2 \times 6 = 12 & \implies x = 1, y = 7 & \implies xy = 7 \\ 3 \times 4 = 12 & \implies x = 2, y = 5 & \implies xy = 10 \\ 4 \times 3 = 12 & \implies x = 3, y = 4 & \implies xy = 12 \\ 6 \times 2 = 12 & \implies x = 5, y = 3 & \implies xy = 15 \\ 12 \times 1 = 12 & \implies x = 11, y = 2 & \implies xy = 22 \end{array}

Therefore the sum of all possible x y xy is 7 + 10 + 12 + 15 + 22 = 66 7+10+12+15+22 = \boxed{66} .

The given expression can be simplified to ( x + 1 ) 2 ( y 1 ) 2 = 144 (x+1)^2(y-1)^2=144 . Since x , y x, y are positive integers, therefore ( x + 1 ) ( y 1 ) = 12 (x+1)(y-1)=12 . Considering all the factors of 12 12 , we get the pairs ( x , y ) (x, y) as ( 1 , 7 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 5 , 3 ) , ( 11 , 2 ) (1,7), (2,5), (3,4), (5,3), (11,2) , yielding the values of the product x y xy as 7 , 10 , 12 , 15 , 22 7,10,12,15,22 , whose sum is 66 \boxed {66} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...