Elementary Calculus

Calculus Level 5

An antiderivative of the function x 3 x x 6 + 1 \dfrac{x^3-x}{x^6 + 1} can be expressed as 1 3 ln ( a x 4 b x 2 + c d x 2 + 1 ) + C \dfrac13 \ln\left( \dfrac{ \sqrt{ax^4 -bx^2 + c}}{dx^2 + 1} \right) + C , where a , b , c , d a,b,c,d are constants, and C C denotes the arbitrary constant of integration .

Find the smallest possible value of a + b + c + d a+b+c+d .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Muhammad Alif
Jul 12, 2018

x ( x 2 1 ) x 6 + 1 d t \int\frac{x(x^2-1)}{x^6+1}dt ---> assume : x 2 = a x^2=a ---> 2 x d x = d a 2xdx=da

---> 1 2 a 1 a 3 + 1 d a = 1 2 a 1 ( a + 1 ) ( a 2 a + 1 ) d a \frac{1}{2}\int\frac{a-1}{a^3+1} da=\frac{1}{2}\int\frac{a-1}{(a+1)(a^2-a+1)} da

---> a 1 ( a + 1 ) ( a 2 a + 1 ) = P a + 1 Q a + R a 2 a + 1 \frac{a-1}{(a+1)(a^2-a+1)}=\frac{P}{a+1}-\frac{Qa+R}{a^2-a+1}

a 1 = ( P Q ) a 2 + ( P Q R ) a + ( P R ) a-1=(P-Q)a^2+(-P-Q-R)a+(P-R) ---> P = Q = 2 3 , R = 1 3 P=Q=-\frac{2}{3}, R=\frac{1}{3}

---> 1 2 a 1 ( a + 1 ) ( a 2 a + 1 ) d a = 1 6 ( 2 a + 1 + 2 a 1 a 2 a + 1 ) d a \frac{1}{2}\int\frac{a-1}{(a+1)(a^2-a+1)} da = \frac{1}{6}\int(\frac{-2}{a+1}+\frac{2a-1}{a^2-a+1})da

We must evaluate the integral of 2 a 1 a 2 a + 1 d a \int\frac{2a-1}{a^2-a+1}da first :

---> 2 a 1 a 2 a + 1 d a = 4 2 a 1 ( 2 a 1 ) 2 + 3 d a \int\frac{2a-1}{a^2-a+1}da = 4\int\frac{2a-1}{(2a-1)^2+3} da

---> consider : 3 2 t a n θ = 2 a 1 \sqrt[2]{3}tanθ=2a-1 ---> a = 3 2 t a n θ + 1 2 a=\frac{\sqrt[2]{3}tanθ+1}{2} ---> d a = 3 2 2 s e c 2 θ d θ da=\frac{\sqrt[2]{3}}{2}sec^2θ dθ

2 3 2 . t a n θ 3. s e c 2 θ 3 2 s e c 2 θ d θ = 2 tan θ d θ = 2. l n c o s θ = 2 l n 3 2 4 a 2 4 a + 4 2 + C 2\int\frac{\sqrt[2]{3}.tanθ}{3.sec^2θ}\sqrt[2]{3}sec^2θ dθ = 2\int\tanθ dθ = -2.ln|cosθ| = -2ln|\frac{\sqrt[2]{3}}{\sqrt[2]{4a^2-4a+4}}|+ C

Then, we have :

1 6 ( 2 a + 1 + 2 a 1 a 2 a + 1 ) d a = 1 6 ( 2. l n a + 1 2 l n 3 2 4 a 2 4 a + 4 2 + C ) = 1 3 . l n 4 x 4 4 x 2 + 4 2 3 2 ( x 2 + 1 ) + K \frac{1}{6}\int(\frac{-2}{a+1}+\frac{2a-1}{a^2-a+1})da = \frac{1}{6}(-2.ln|a+1|-2ln|\frac{\sqrt[2]{3}}{\sqrt[2]{4a^2-4a+4}}|+ C) = \frac{1}{3}.ln|\frac{\sqrt[2]{4x^4-4x^2+4}}{\sqrt[2]{3}(x^2+1)}|+K , K = 1 6 C K=\frac{1}{6}C

---> I.e the desired value is 4 4 + 4 + 1 = 5 4-4+4+1=5

Multiple answers possible . Also, you had already put a negative sign with b x 2 bx^{2} in given statement. Then why u took b = 4 b=-4 . @Muhammad Alif

C Anshul - 2 years, 11 months ago

Log in to reply

Oh sorry, I will correct that, thanks @C Anshul

Muhammad Alif - 2 years, 11 months ago
Chew-Seong Cheong
Jul 19, 2018

I = x 3 x x 6 + 1 d x = x 3 x ( x 2 + 1 ) ( x 4 x 2 + 1 ) d x By partial fraction decomposition = ( 2 x 3 ( x 2 + 1 ) + 2 x 3 x 3 ( x 4 x 2 + 1 ) ) d x = ( 2 x 3 ( x 2 + 1 ) + 2 x 3 x 3 ( x 2 + 3 x + 1 ) ( x 2 3 x + 1 ) ) d x By partial fraction decomposition again = ( 2 x 3 ( x 2 + 1 ) + 2 x + 3 6 ( x 2 + 3 x + 1 ) + 2 x 3 6 ( x 2 3 x + 1 ) ) d x = ln ( x 2 + 1 ) 3 + ln ( x 2 + 3 x + 1 ) 6 + ln ( x 2 3 x + 1 ) 6 + C where C is the arbitrary constant of integration. = 1 3 ln ( x 4 x 2 + 1 x 2 + 1 ) + C \begin{aligned} I & = \int \frac {x^3-x}{x^6+1} dx \\ & = \int \frac {x^3-x}{(x^2+1)(x^4-x^2+1)} dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \int \left(\frac {-2x}{3(x^2+1)} + \frac {2x^3-x}{3(x^4-x^2+1)} \right) dx \\ & = \int \left(\frac {-2x}{3(x^2+1)} + {\color{#3D99F6} \frac {2x^3-x}{3(x^2+\sqrt 3x+1)(x^2-\sqrt 3x+1)}} \right) dx & \small \color{#3D99F6} \text{By partial fraction decomposition again} \\ & = \int \left(\frac {-2x}{3(x^2+1)} + {\color{#3D99F6}\frac {2x+\sqrt 3}{6(x^2+\sqrt 3x+1)} +\frac {2x-\sqrt 3}{6(x^2-\sqrt 3x+1)}}\right) dx \\ & = - \frac {\ln(x^2+1)}3 + \frac {\ln(x^2+\sqrt 3x+1)}6 + \frac {\ln(x^2-\sqrt 3x+1)}6 + \color{#3D99F6}C & \small \color{#3D99F6} \text{where }C \text{ is the arbitrary constant of integration.} \\ & = \frac 13 \ln \left(\frac {\sqrt{x^4-x^2+1}}{x^2+1}\right) + C \end{aligned}

Therefore, a + b + c + d = 1 + 1 + 1 + 1 = 4 a+b+c+d = 1+1+1+1 = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...