Eleven Square Theorem

Geometry Level 5

In the arrangement of 11 squares, the red, blue and yellow squares of respective areas of 2 2 , 3 3 and 4 4 are pairwise tangent to each other.

Determine the area sum of the purple square and the green square.


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jan 28, 2021

If four squares are arranged as follows:

Then by the law of cosines on A B C \triangle ABC , cos A C B = a 2 + b 2 c 2 2 a b \cos \angle ACB = \cfrac{a^2 + b^2 - c^2}{2ab} .

And cos A C B = cos ( 180 ° A C B ) = cos A C B \cos \angle A'CB' = \cos(180° - \angle ACB) = -\cos ACB .

And by the law of cosines on A B C \triangle A'B'C , c 2 = a 2 + b 2 2 a b cos A C B = a 2 + b 2 + 2 a b cos A C B = a 2 + b 2 + 2 a b a 2 + b 2 c 2 2 a b = 2 ( a 2 + b 2 ) c 2 c'^2 = a^2 + b^2 - 2ab \cos A'CB' = a^2 + b^2 + 2ab \cos ACB = a^2 + b^2 + 2ab \cdot \cfrac{a^2 + b^2 - c^2}{2ab} = 2(a^2 + b^2) - c^2 .

Using c 2 = 2 ( a 2 + b 2 ) c 2 c'^2 = 2(a^2 + b^2) - c^2 on the red, blue, and yellow squares, the square to the immediate right has an area of 2 ( 3 + 4 ) 2 = 12 2(3 + 4) - 2 = 12 , and the square to the immediate left has an area of 2 ( 2 + 4 ) 3 = 9 2(2 + 4) - 3 = 9 . Then using it on the 2 2 , 4 4 , and 9 9 squares, the other square on the left has an area of 2 ( 4 + 9 ) 2 = 24 2(4 + 9) - 2 = 24 .

Now label some points as follows:

From the area of the known squares, B C = 3 B'C = \sqrt{3} , C A = D A = 2 CA' = DA' = 2 , A B = A F = 2 3 A'B' = A'F = 2\sqrt{3} , E D = 3 ED = 3 , and E A = 2 6 EA' = 2\sqrt{6} .

By the law of cosines on A B C \triangle A'B'C , cos C A B = A C 2 + A B 2 C B 2 2 A C A B = 4 + 12 3 2 2 2 3 = 13 3 24 \cos \angle CA'B' = \cfrac{A'C^2 + A'B'^2 - CB'^2}{2 \cdot A'C \cdot A'B'} = \cfrac{4 + 12 - 3}{2 \cdot 2 \cdot 2\sqrt{3}} = \cfrac{13\sqrt{3}}{24} .

By the law of cosines on A D E \triangle A'DE , cos D A E = A D 2 + A E 2 D E 2 2 A D A E = 4 + 24 9 2 2 2 6 = 19 6 48 \cos \angle DA'E = \cfrac{A'D^2 + A'E^2 - DE^2}{2 \cdot A'D \cdot A'E} = \cfrac{4 + 24 - 9}{2 \cdot 2 \cdot 2\sqrt{6}} = \cfrac{19\sqrt{6}}{48} .

Using sin θ = 1 cos 2 θ \sin \theta = \sqrt{1 - \cos^2 \theta} , sin C A B = 1 ( 13 3 24 ) 2 = 69 24 \sin \angle CA'B' = \sqrt{1 - (\cfrac{13\sqrt{3}}{24})^2} = \cfrac{\sqrt{69}}{24} and sin D A E = 1 ( 19 6 48 ) 2 = 138 48 \sin \angle DA'E = \sqrt{1 - (\cfrac{19\sqrt{6}}{48})^2} = \cfrac{\sqrt{138}}{48} .

That means cos E A F = cos ( 180 ° ( C A B + D A E ) ) = cos ( C A B + D A E ) = cos C A B cos D A E + sin C A B sin D A E = 13 3 24 19 6 48 + 69 24 138 48 = 7 2 12 \cos \angle EA'F = \cos(180° - (\angle CA'B' + \angle DA'E)) = -\cos(\angle CA'B' + \angle DA'E) = -\cos \angle CA'B' \cos \angle DA'E + \sin \angle CA'B' \sin \angle DA'E = -\cfrac{13\sqrt{3}}{24} \cdot \cfrac{19\sqrt{6}}{48} + \cfrac{\sqrt{69}}{24} \cdot \cfrac{\sqrt{138}}{48} = -\cfrac{7\sqrt{2}}{12} .

So by the law of cosines on A E F \triangle A'EF , E F 2 = E A 2 + A F 2 2 E A A F cos E A F = 24 + 12 + 2 2 6 2 3 7 2 12 = 64 EF^2 = EA'^2 + A'F^2 - 2 \cdot EA' \cdot A'F \cdot \cos \angle EA'F = 24 + 12 + 2 \cdot 2 \sqrt{6} \cdot 2 \sqrt{3} \cdot \cfrac{7\sqrt{2}}{12} = 64 , which is also the area of the purple square.

Using c 2 = 2 ( a 2 + b 2 ) c 2 c'^2 = 2(a^2 + b^2) - c^2 on the 12 12 , 24 24 , and 64 64 squares, the next square has an area of 2 ( 12 + 24 ) 64 = 8 2(12 + 24) - 64 = 8 .

Using c 2 = 2 ( a 2 + b 2 ) c 2 c'^2 = 2(a^2 + b^2) - c^2 on the 8 8 , 12 12 , and 24 24 squares, the next square has an area of 2 ( 8 + 12 ) 24 = 16 2(8 + 12) - 24 = 16 .

Using c 2 = 2 ( a 2 + b 2 ) c 2 c'^2 = 2(a^2 + b^2) - c^2 on the 8 8 , 12 12 , and 16 16 squares, the next square has an area of 2 ( 12 + 16 ) 8 = 48 2(12 + 16) - 8 = 48 .

Using c 2 = 2 ( a 2 + b 2 ) c 2 c'^2 = 2(a^2 + b^2) - c^2 on the 12 12 , 16 16 , and 48 48 squares, the next square has an area of 2 ( 16 + 48 ) 12 = 116 2(16 + 48) - 12 = 116 .

Therefore, the area sum of the purple and green square is 64 + 116 = 180 64 + 116 = \boxed{180} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...