Ellipoint !

Geometry Level 3

If 2 x y + a = 0 2x-y+a=0 touches the ellipse x 2 5 + y 2 9 = 1 \dfrac{x^2}{5}+\dfrac{y^2}{9}=1 ,then the value of a 2 100 a^2-100 is


The answer is -71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 22, 2019

If the above line touches the ellipse in a single point, then we have:

x 2 5 + ( 2 x + a ) 2 9 = 1 ; \frac{x^2}{5} + \frac{(2x+a)^{2}}{9} = 1;

or 9 x 2 + 5 ( 2 x + a ) 2 = 45 ; 9x^2 + 5(2x+a)^{2} = 45;

or 29 x 2 + 20 a x + ( 5 a 2 45 ) = 0 ; 29x^2 + 20ax + (5a^2 - 45) = 0;

or x = 20 a ± 400 a 2 4 ( 29 ) ( 5 a 2 45 ) 58 ; x = \frac{-20a \pm \sqrt{400a^2 - 4(29)(5a^2 - 45)}}{58};

or x = 20 a ± 5220 180 a 2 58 . x = \frac{-20a \pm \sqrt{5220 - 180a^2}}{58}.

In order to have a single point solution for x x , we require the discriminant to equal zero: 5220 180 a 2 = 0 a 2 = 29. 5220 - 180a^2 = 0 \Rightarrow a^2 = 29. Thus, a 2 100 = 71 . a^2 - 100 = \boxed{-71}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...