Ellipse in Space - 2

Geometry Level 3

An ellipse is given by the parametric equation,

p ( t ) = p 0 + p 1 cos t + p 2 sin t , t R p(t) = p_0 + p_1 \cos t + p_2 \sin t , \hspace{6pt} t \in \mathbb{R}

where p 0 = ( 5 , 8 , 13 ) , p 1 = ( 2 , 4 , 3 ) , p 2 = ( 5 , 8 , 6 ) p_0 = ( 5 , -8, 13 ) , p_1 = ( 2, 4, -3) , p_2 = ( 5, -8, 6 )

Note that the vectors p 1 p_1 and p 2 p_2 are not perpendicular to each other. Find the lengths of the semi-minor and semi-major axes.

4.715 , 12.715 4.715, 12.715 3.810 , 11.810 3.810, 11.810 3.221 , 11.221 3.221 , 11.221 4.255 , 9.255 4.255, 9.255

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First we'll find the vertices of the ellipse, they occur when the curvature attains an extreme point.

The curvature is given by κ = p × p p 3 \kappa = \dfrac{\lVert p' \times p'' \rVert}{\lVert p' \rVert^3} , in this case we get κ = p 1 × p 2 p 1 sin ( t ) + p 2 cos ( t ) 3 \kappa = \dfrac{\lVert p_1 \times p_2 \rVert}{\lVert -p_1\sin(t) + p_2\cos(t) \rVert^3} . Since the numerator is constant, we only need to find the extreme points of the denominator, and for simplicity, instead find the extreme points of f ( t ) = p 1 sin ( t ) + p 2 cos ( t ) 2 = p 1 2 sin 2 ( t ) p 1 p 2 sin ( 2 t ) + p 2 2 cos 2 ( t ) f(t)=\lVert -p_1\sin(t) + p_2\cos(t) \rVert^2 = \lVert p_1 \rVert^2 \sin^2(t) - p_1 \cdot p_2 \sin(2t) + \lVert p_2 \rVert^2 \cos^2(t) .

Take the derivative: f ( t ) = p 1 2 sin ( 2 t ) 2 p 1 p 2 cos ( 2 t ) p 2 2 sin ( 2 t ) f'(t) = \lVert p_1 \rVert^2 \sin(2t) - 2p_1 \cdot p_2 \cos(2t) - \lVert p_2 \rVert^2 \sin(2t) . So, the extreme points are given by tan ( 2 t ) = 2 p 1 p 2 p 1 2 p 2 2 \tan(2t) = \dfrac{2 p_1 \cdot p_2}{\lVert p_1 \rVert^2 - \lVert p_2 \rVert^2} , i.e., t k = θ + π 2 k t_k=\theta + \dfrac{\pi}{2}k , for 0 k 3 0 \leq k \leq 3 , where θ = 1 2 arctan ( 2 p 1 p 2 p 1 2 p 2 2 ) \theta = \dfrac{1}{2}\arctan \left( \dfrac{2 p_1 \cdot p_2}{\lVert p_1 \rVert^2 - \lVert p_2 \rVert^2} \right) .

So, the four vertices are given by V k = p ( t k ) V_k = p(t_k) . Then one pair of opposite vertices is V 0 = p 0 + p 1 cos θ + p 2 sin θ V_0 = p_0 + p_1 \cos \theta + p_2 \sin \theta and V 2 = p 0 p 1 cos θ p 2 sin θ V_2 = p_0 - p_1 \cos \theta - p_2 \sin \theta , the other pair is V 1 = p 0 p 1 sin θ + p 2 cos θ V_1 = p_0 - p_1 \sin \theta + p_2 \cos \theta and V 3 = p 0 + p 1 sin θ p 2 cos θ V_3 = p_0 + p_1 \sin \theta - p_2 \cos \theta . Then, the lenghts of the semi-minor and semi-major axes (not necessarily in that order) are given by a = 1 2 V 0 V 2 a=\dfrac{1}{2} \lVert V_0 - V_2 \rVert and b = 1 2 V 1 V 3 b=\dfrac{1}{2} \lVert V_1 - V_3 \rVert .

Finally, with the given values of p 0 , p 1 p_0, p_1 and p 2 p_2 , we get that the length of the semi-major axis is 61 + 4 11.810 \sqrt{61}+4 \approx 11.810 and the length of the semi-minor axis is 61 4 3.810 \sqrt{61}-4 \approx 3.810 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...