Ellipse lying on a circular cylinder

Geometry Level pending

An ellipse in space is specified by

p ( t ) = ( 4 , 3 , 3 ) cos t + ( 5 , 10 , 50 3 ) sin t \mathbf{p}(t) = (4,3,-3) \cos t + \left (5,10, \dfrac{50}{3} \right ) \sin t

This ellipse lies on the surface of a circular cylinder whose axis is along the unit vector a ^ = ( a x , a y , a z ) \mathbf{\hat{a}} = (a_x, a_y, a_z ) . There is two such cylinders with the same radius but different axis direction. If we choose the cylinder with the greater value of a z | a_z | , then what will be the sum a x + a y + a z | a_x | + | a_y | + | a_z | ?


The answer is 1.56773.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Dec 4, 2020

The given equation is a parametric representation of an ellipse with a center of ( 0 , 0 , 0 ) (0, 0, 0) .

The distance between each point on the ellipse from its center ( 0 , 0 , 0 ) (0, 0, 0) is d = ( 4 cos t + 5 sin t ) 2 + ( 3 cos t + 10 sin t ) 2 + ( 3 cos t + 50 3 sin t ) 2 = 3319 9 sin 2 t + 34 d = \sqrt{(4 \cos t + 5 \sin t)^2 + (3 \cos t + 10 \sin t)^2 + (-3 \cos t + \frac{50}{3} \sin t)^2} = \sqrt{\frac{3319}{9}\sin^2 t + 34} . Since the maximum of sin 2 t \sin^2 t is 1 1 at at t = 90 ° t = 90° , the semi-major axis is a = 3319 9 1 + 34 = 5 3 145 a = \sqrt{\frac{3319}{9} \cdot 1 + 34} = \frac{5}{3}\sqrt{145} with a vector of O A = ( 4 , 3 , 3 ) cos 90 ° + ( 5 , 10 , 50 3 ) sin 90 ° = ( 5 , 10 , 50 3 ) \overrightarrow{OA} = (4, 3, -3) \cos 90° + (5, 10, \frac{50}{3}) \sin 90° = (5, 10, \frac{50}{3}) , and since the minimum of sin 2 t \sin^2 t is 0 0 at t = 0 ° t = 0° , the semi-minor axis is b = 3319 9 0 + 34 = 34 b = \sqrt{\frac{3319}{9} \cdot 0 + 34} = \sqrt{34} with a vector of O B = ( 4 , 3 , 3 ) cos 0 ° + ( 5 , 10 , 50 3 ) sin 0 ° = ( 4 , 3 , 3 ) \overrightarrow{OB} = (4, 3, -3) \cos 0° + (5, 10, \frac{50}{3}) \sin 0° = (4, 3, -3) .

The vector perpendicular to both O A \overrightarrow{OA} and O B \overrightarrow{OB} is O C = O A × O B = ( 48 , 49 , 15 ) \overrightarrow{OC} = \overrightarrow{OA} \times \overrightarrow{OB} = (48, -49, 15) .

An ellipse lying on the surface of a circular cylinder whose axis is along the unit vector a = ( a x , a y , a z ) \mathbf{a} = (a_x, a_y, a_z) will be one where a O B \mathbf{a} \perp \overrightarrow{OB} so that:

4 a x + 3 a y 3 a z = 0 4a_x + 3a_y - 3a_z = 0

and cos θ = b a = O C a O C a \cos \theta = \cfrac{b}{a} = \cfrac{\overrightarrow{OC} \cdot \mathbf{a}}{|\overrightarrow{OC}| \cdot |\mathbf{a}|} or 34 5 3 145 = 48 a x 49 a y + 15 a z 4 8 2 + 4 9 2 + 1 5 2 1 \cfrac{\sqrt{34}}{\frac{5}{3}\sqrt{145}} = \cfrac{48a_x - 49a_y + 15a_z}{\sqrt{48^2 + 49^2 + 15^2} \cdot 1} , which rearranges to:

240 a x 245 a y + 75 a z = 102 240a_x - 245a_y + 75a_z = 102

Also, since a \mathbf{a} is a unit vector:

a x 2 + a y 2 + a z 2 = 1 a_x^2 + a_y^2 + a_z^2 = 1

These three equations solve to a = ( 1 725 ( 144 3 3319 ) , 1 725 ( 147 6 3319 ) , 1 725 ( 45 10 3319 ) ) \mathbf{a} = (\frac{1}{725}(144 - 3\sqrt{3319}), \frac{1}{725}(-147 - 6\sqrt{3319}), \frac{1}{725}(45 - 10\sqrt{3319})) or a = ( 1 725 ( 144 + 3 3319 ) , 1 725 ( 147 + 6 3319 ) , 1 725 ( 45 + 10 3319 ) ) \mathbf{a} = (\frac{1}{725}(144 + 3\sqrt{3319}), \frac{1}{725}(-147 + 6\sqrt{3319}), \frac{1}{725}(45 + 10\sqrt{3319})) , the second of which has a higher a z |a_z| value.

Therefore, the sum of a x + a y + a z = 1 725 ( 144 + 3 3319 ) + 1 725 ( 147 + 6 3319 ) + 1 725 ( 45 + 10 3319 ) = 1 725 ( 42 + 19 3319 ) 1.56773 |a_x| + |a_y| + |a_z| = |\frac{1}{725}(144 + 3\sqrt{3319})| + |\frac{1}{725}(-147 + 6\sqrt{3319})| + |\frac{1}{725}(45 + 10\sqrt{3319})| = \frac{1}{725}(42 + 19\sqrt{3319}) \approx \boxed{1.56773} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...