I need you to focus!

Geometry Level 3

If the foci of the ellipse x 2 25 + y 2 9 = 1 \large \frac{x^2}{25}+\frac{y^2}{9}=1 are ( 4 , 0 ) (4,0) and ( 4 , 0 ) (-4,0) , then for real number λ \lambda , the foci of the ellipse x 2 25 + λ 2 + y 2 9 + λ 2 = 1 \large \frac{x^2}{25+ \lambda^2}+\frac{y^2}{9+\lambda^2}=1 are:

( λ 2 , 0 ) , ( λ 2 , 0 ) (\lambda^2,0),(-\lambda^2,0) ( 0 , 4 ) , ( 0 , 4 ) (0,4),(0,-4) ( 0 , 0 ) , ( 0 , 0 ) (0,0),(0,0) ( 4 + λ 2 , 0 ) , ( 4 + λ 2 , 0 ) (4+\lambda^2,0),(-4+\lambda^2,0) ( 4 , 0 ) , ( 4 , 0 ) (4,0),(-4,0) ( λ , 0 ) , ( λ , 0 ) (\lambda,0),(-\lambda,0)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sean Sullivan
Jul 28, 2015

The foci of an ellipse x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 where a > b a>b are ( ± a 2 b 2 , 0 ) \left(\pm\sqrt{a^{2}-b^{2}},0\right) , so for the second equation we have foci at ( ± 25 + λ 2 ( 9 + λ 2 ) , 0 ) = ( ± 16 , 0 ) \left(\pm\sqrt{25+\lambda^{2}-(9+\lambda^{2})},0\right)=\left(\pm\sqrt{16},0\right) hence the answer is ( 4 , 0 ) , ( 4 , 0 ) \boxed{(4,0),(-4,0)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...