Ellipses and Circles

Calculus Level 5

The length of the semi-major and semi-minor axis of the two congruent ellipses above are 3 3 units and 1 1 unit respectively and the two congruent circles have a radius of 1 1 .

If the centers of the ellipses and circles are all 1 1 unit apart as shown above, find the total area of the shaded regions above.


The answer is 6.7508165.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 29, 2018

For Region 2 2 :

I chose the ellipses ( x 2 9 + y 2 = 1 (\dfrac{x^2}{9} + y^2 = 1 above the line y = 0 ) y = 0) and ( x 2 9 + ( y 1 ) 2 = 1 (\dfrac{x^2}{9} + (y - 1)^2 = 1 below the line y = 1 ) y = 1) .

Solving for y y in both ellipses we want:

f ( x ) = 1 3 9 x 2 f(x) = \dfrac{1}{3}\sqrt{9 - x^2} and g ( x ) = 1 1 3 9 x 2 g(x) = 1 - \dfrac{1}{3}\sqrt{9 - x^2} .

f ( x ) = g ( x ) x = ± 3 3 2 f(x) = g(x) \implies x = \pm\dfrac{3\sqrt{3}}{2} \implies the area A 2 = 3 3 2 3 3 2 f ( x ) g ( x ) d x = 2 3 3 3 2 3 3 2 9 x 2 d x 3 3 A_{2} = \displaystyle\int_{-\frac{3\sqrt{3}}{2}}^{\frac{3\sqrt{3}}{2}} f(x) - g(x) dx = \dfrac{2}{3}\displaystyle\int_{-\frac{3\sqrt{3}}{2}}^{\frac{3\sqrt{3}}{2}} \sqrt{9 - x^2} dx - 3\sqrt{3}

For I = 2 3 3 3 2 3 3 2 9 x 2 d x I = \dfrac{2}{3}\displaystyle\int_{-\frac{3\sqrt{3}}{2}}^{\frac{3\sqrt{3}}{2}} \sqrt{9 - x^2} dx

Let x = 3 sin ( θ ) d x = 3 cos ( θ ) I = 6 π 3 π 3 cos 2 ( θ ) d θ = 3 π 3 π 3 1 + cos ( 2 θ ) d θ = x = 3\sin(\theta) \implies dx = 3\cos(\theta) \implies I = 6\displaystyle\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^2(\theta) d\theta = 3\displaystyle\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 1 + \cos(2\theta) d\theta = 3 ( θ + 1 2 sin ( 2 θ ) ) π 3 π 3 = 2 π + 3 3 2 A 2 = 2 π 3 3 2 3.6851091 3(\theta + \dfrac{1}{2}\sin(2\theta))|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = 2\pi + \dfrac{3\sqrt{3}}{2} \implies A_{2} = 2\pi - \dfrac{3\sqrt{3}}{2} \approx \boxed{3.6851091}

I chose the circles x 2 + ( y 2 ) 2 = 1 x^2 + (y - 2)^2 = 1 and x 2 + ( y + 1 ) 2 = 1 x^2 + (y + 1)^2 = 1 .

Note by symmetry A 3 = A 1 A_{3} = A_{1} .

For Region 1 1 :

Using the portion of the ellipse ( m ( x ) = 1 + 1 3 9 x 2 (m(x) = 1 + \dfrac{1}{3}\sqrt{9 - x^2} above the line y = 1 ) y = 1) and the circle ( h ( x ) = 2 1 x 2 (h(x) = 2 - \sqrt{1 - x^2} below the line y = 2 ) y = 2) and setting h ( x ) = m ( x ) h(x) = m(x) \implies

9 x 2 + 3 1 x 2 = 3 10 x 2 + 9 + 6 9 10 x 2 + x 4 = 0 324 360 x 2 + 36 x 4 = 100 x 4 180 x 2 + 81 \sqrt{9 - x^2} + 3\sqrt{1 - x^2} = 3 \implies -10x^2 + 9 + 6\sqrt{9 - 10x^2 + x^4} = 0 \implies 324 - 360x^2 + 36x^4 = 100x^4 - 180x^2 + 81

64 x 4 + 180 x 2 243 = 0 x 2 = 9 32 ( 5 ± 73 ) x 1 , x 2 = ± 3 2 73 5 8 \implies 64x^4 + 180x^2 - 243 = 0 \implies x^2 = \dfrac{9}{32}(-5 \pm \sqrt{73}) \implies x_{1},x_{2} = \pm\dfrac{3\sqrt{2}\sqrt{\sqrt{73} - 5}}{8} dropping the two imaginary roots.

A 1 = x 1 x 2 1 3 9 x 2 + 1 x 2 d x 3 2 73 5 4 A_{1} = \displaystyle\int_{x_{1}}^{x_{2}} \dfrac{1}{3}\sqrt{9 - x^2} + \sqrt{1 - x^2} \:\ dx - \dfrac{3\sqrt{2}\sqrt{\sqrt{73} - 5}}{4} .

Let x = sin ( θ ) d x = cos ( θ ) d θ 1 x 2 d x = 1 2 ( θ + sin ( θ ) cos ( θ ) ) = 1 2 ( arcsin ( x ) + x 1 x 2 ) x = \sin(\theta) \implies dx = \cos(\theta) d\theta \implies \displaystyle\int \sqrt{1- x^2} dx = \dfrac{1}{2}(\theta + \sin(\theta)\cos(\theta)) = \dfrac{1}{2}(\arcsin(x) + x\sqrt{1 - x^2})

Let x = sin ( λ ) d x = cos ( λ ) d λ 1 3 9 x 2 d x = 3 2 ( λ + sin ( λ ) cos ( λ ) ) = 3 2 ( arcsin ( x 3 ) + x 9 x 2 3 ) x = \sin(\lambda) \implies dx = \cos(\lambda) d\lambda \implies \dfrac{1}{3}\displaystyle\int \sqrt{9- x^2} dx = \dfrac{3}{2}(\lambda + \sin(\lambda)\cos(\lambda)) = \dfrac{3}{2}(\arcsin(\dfrac{x}{3}) + \dfrac{x\sqrt{9 - x^2}}{3})

I = x 1 x 2 1 3 9 x 2 + 1 x 2 d x = 1 2 ( arcsin ( x ) + 3 arcsin ( x 3 ) + x ( 1 x 2 + 9 x 2 3 ) ) x 1 x 2 = \implies I = \displaystyle\int_{x_{1}}^{x_{2}} \dfrac{1}{3}\sqrt{9 - x^2} + \sqrt{1 - x^2} \:\ dx = \dfrac{1}{2}(\arcsin(x) + 3\arcsin(\dfrac{x}{3}) + x(\sqrt{1 - x^2} + \dfrac{\sqrt{9 - x^2}}{3}))|_{x_{1}}^{x_{2}} =

arcsin ( x 2 ) + 3 arcsin ( x 2 3 ) + x 2 ( 1 x 2 2 + 9 x 2 2 3 ) \arcsin(x_{2}) + 3\arcsin(\dfrac{x_{2}}{3}) + x_{2}(\sqrt{1 - x_{2}^2} + \dfrac{\sqrt{9 - x_{2}^2}}{3})

Using x 2 0.9983742 I = 3.5296021 A 1 = 3.5296021 2 x 2 = 3.5296021 1.9967484 = 1.5328537 x_{2} \approx 0.9983742 \implies I = 3.5296021 \implies A_{1} = 3.5296021 - 2 * x_{2} = 3.5296021 - 1.9967484 = \boxed{1.5328537}

A T o t a l = A 2 + 2 A 1 = 3.6851091 + 2 ( 1.5328537 ) = 6.7508165 \implies A_{Total} = A_{2} + 2A_{1} = 3.6851091 + 2(1.5328537) = \boxed{6.7508165} .

Note: I could not put any functions in the ellipse - circle diagram because the latex in Geogebra no longer works.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...