Ellipse's tangent and minimum area

Geometry Level 5

Given that ellipse C C has the equation: x 2 2 + y 2 = 1 \dfrac{x^2}{2}+y^2=1 and point F F is its right focus, P P is a point on the ellipse and the tangent line passing through P P intersects with the line: x = 2 x=2 at point Q Q , as shown above.

If P P is above the x x -axis, and P Q F \triangle PQF has the minimum area, k k is the slope of the tangent line, find 10000 k 2 \lfloor 10000 k^2 \rfloor .


The answer is 16180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Apr 12, 2020

Let the coordinates of P P be ( p , q ) (p, q) . Since rearranging x 2 2 + y 2 = 1 \frac{x^2}{2} + y^2 = 1 gives y = 1 2 4 2 x 2 y = \frac{1}{2}\sqrt{4 - 2x^2} , the coordinates of P P are ( p , 1 2 4 2 p 2 ) \Big(p, \frac{1}{2}\sqrt{4 - 2p^2}\Big) .

By implicit differentiation on x 2 2 + y 2 = 1 \frac{x^2}{2} + y^2 = 1 , x + 2 y d y d x = 0 x + 2y\frac{dy}{dx} = 0 , or d y d x = x 2 y \frac{dy}{dx} = -\frac{x}{2y} . The slope of the tangent line at P P is then k = p 2 q = p 4 2 p 2 k = -\frac{p}{2q} = -\frac{p}{\sqrt{4 - 2p^2}} , and its equation is y 1 2 4 2 x 2 = p 4 2 p 2 ( x p ) y - \frac{1}{2}\sqrt{4 - 2x^2} = -\frac{p}{\sqrt{4 - 2p^2}}(x - p) , or y = p x + 2 4 2 p 2 y = \frac{-px + 2}{\sqrt{4 - 2p^2}} .

Q Q is the intersection of x = 2 x = 2 and y = p x + 2 4 2 p 2 y = \frac{-px + 2}{\sqrt{4 - 2p^2}} , so its coordinates are ( 2 , 2 ( 1 p ) 4 2 p 2 ) \Big(2, \frac{2(1 - p)}{\sqrt{4 - 2p^2}}\Big) .

The slope of F P FP is m 1 = 1 2 4 2 p 2 0 p 1 = 4 2 p 2 2 ( p 1 ) m_1 = \frac{\frac{1}{2}\sqrt{4 - 2p^2} - 0}{p - 1} = \frac{\sqrt{4 - 2p^2}}{2(p - 1)} , and the slope of F Q FQ is m 2 = 2 ( 1 p ) 4 2 p 2 0 2 1 = 2 ( 1 p ) 4 2 p 2 m_2 = \frac{\frac{2(1 - p)}{\sqrt{4 - 2p^2}} - 0}{2 - 1} = \frac{2(1 - p)}{\sqrt{4 - 2p^2}} .

Since m 1 m 2 = 4 2 p 2 2 ( p 1 ) 2 ( 1 p ) 4 2 p 2 = 1 m_1 \cdot m_2 = \frac{\sqrt{4 - 2p^2}}{2(p - 1)} \cdot \frac{2(1 - p)}{\sqrt{4 - 2p^2}} = -1 , P F Q \angle PFQ is always a right angle.

The distance F P = ( p 1 ) 2 + ( 1 2 4 2 p 2 0 ) 2 = p 2 2 FP = \sqrt{(p - 1)^2 + (\frac{1}{2}\sqrt{4 - 2p^2} - 0)^2} = \frac{p - 2}{\sqrt{2}} and the distance F Q = ( 2 1 ) 2 + ( 2 ( 1 p ) 4 2 p 2 0 ) 2 = p 2 2 p 2 FQ = \sqrt{(2 - 1)^2 + (\frac{2(1 - p)}{\sqrt{4 - 2p^2}} - 0)^2} = \frac{p - 2}{\sqrt{2 - p^2}} .

The area of right triangle P F Q \triangle PFQ is then A = 1 2 p 2 2 p 2 2 p 2 = ( p 2 ) 2 2 4 2 p 2 A = \frac{1}{2} \cdot \frac{p - 2}{\sqrt{2}} \cdot \frac{p - 2}{\sqrt{2 - p^2}} = \frac{(p - 2)^2}{2\sqrt{4 - 2p^2}} .

Since d 2 A d p 2 > 0 \frac{d^2A}{dp^2} > 0 , the minimum area occurs when d A d p = ( p 2 ) ( p 2 + 2 p 4 ) 2 ( p 2 2 ) 4 2 p 2 = 0 \frac{dA}{dp} = \frac{(p - 2)(p^2 +2p - 4)}{2(p^2 - 2)\sqrt{4 - 2p^2}} = 0 , which solves to p = 5 1 p = \sqrt{5} - 1 for 2 < p < 2 -\sqrt{2} < p < \sqrt{2} .

Since k = p 4 2 p 2 k = -\frac{p}{\sqrt{4 - 2p^2}} and p = 5 1 p = \sqrt{5} - 1 , k 2 = 1 + 5 2 = ϕ k^2 = \frac{1 + \sqrt{5}}{2} = \phi and 10000 k 2 16180 \lfloor 10000k^2 \rfloor \approx \boxed{16180} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...