Elliptic Bonanza.

Calculus Level 4

Let a > b a > b .

The length of the semi-major and semi-minor axis of the two congruent ellipses above are a a units and b b units respectively.

If the centers of the two ellipses are 1 1 unit apart and the area A A of the region R R can be expressed as A = α a b arcsin ( ( α b ) α β α b ) A = \alpha ab\arcsin(\dfrac{\sqrt{(\alpha b)^{\alpha} - \beta}}{\alpha b}) - a α b ( α b ) α β \dfrac{a}{\alpha b}\sqrt{(\alpha b)^{\alpha} - \beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 26, 2018

I chose the ellipses ( x 2 a 2 + y 2 b 2 = 1 (\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 above the line y = 0 ) y = 0) and ( x 2 a 2 + ( y 1 ) 2 b 2 = 1 (\dfrac{x^2}{a^2} + \dfrac{(y - 1)^2}{b^2} = 1 below the line y = 1 ) y = 1) .

Solving for y y in both ellipses we want:

f ( x ) = b a a 2 x 2 f(x) = \dfrac{b}{a}\sqrt{a^2 - x^2} and g ( x ) = 1 b a a 2 x 2 g(x) = 1 - \dfrac{b}{a}\sqrt{a^2 - x^2} .

f ( x ) = g ( x ) x 1 , x 2 = ± a 2 b 4 b 2 1 f(x) = g(x) \implies x_{1},x_{2} = \pm\dfrac{a}{2b}{\sqrt{4b^2 - 1}} \implies the area A = x 1 x 2 f ( x ) g ( x ) d x = 2 b a x 1 x 2 a 2 x 2 d x a b 4 b 2 1 A = \displaystyle\int_{x_{1}}^{x_{2}} f(x) - g(x) dx = \dfrac{2b}{a}\displaystyle\int_{x_{1}}^{x_{2}} \sqrt{a^2 - x^2} dx - \dfrac{a}{b}\sqrt{4b^2 - 1}

For I ( x ) = 2 b a a 2 x 2 d x I(x) = \dfrac{2b}{a}\displaystyle\int \sqrt{a^2 - x^2} dx

Let x = a sin ( θ ) d x = a cos ( θ ) I ( θ ) = 2 a b cos 2 ( θ ) d θ = a b 1 + cos ( 2 θ ) d θ = x = a\sin(\theta) \implies dx = a\cos(\theta) \implies I(\theta) = 2ab\displaystyle\int \cos^2(\theta) d\theta = ab\displaystyle\int 1 + \cos(2\theta) d\theta = a b ( θ + sin ( θ ) cos ( θ ) ) I = a b ( arcsin ( x a ) + x a 2 x 2 a 2 ) x 1 x 2 = 2 a b arcsin ( 4 b 2 1 2 b ) + a 2 b 4 b 2 1 ab(\theta + \sin(\theta)\cos(\theta)) \implies I = ab(\arcsin(\dfrac{x}{a}) + \dfrac{x\sqrt{a^2 - x^2}}{a^2})|_{x_{1}}^{x_{2}} = 2ab\arcsin(\dfrac{\sqrt{4b^2 - 1}}{2b}) + \dfrac{a}{2b}\sqrt{4b^2 - 1} \implies

A = 2 a b arcsin ( ( 2 b ) 2 1 2 b ) a 2 b ( 2 b ) 2 1 = α a b arcsin ( ( α b ) α β α b ) a α b ( α b ) α β α + β = 3 A = 2ab\arcsin(\dfrac{\sqrt{(2b)^2 - 1}}{2b}) - \dfrac{a}{2b}\sqrt{(2b)^2 - 1} = \alpha ab\arcsin(\dfrac{\sqrt{(\alpha b)^{\alpha} - \beta}}{\alpha b}) - \dfrac{a}{\alpha b}\sqrt{(\alpha b)^{\alpha} - \beta} \implies \alpha + \beta = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...