Elliptic Integral

Calculus Level 3

n = 0 ( ( 2 n 1 ) ! ! n ! ) 2 25 6 n π 2 2 n + 1 = 0 π 2 d μ 1 k 2 sin 2 ( μ ) \sum_{n=0}^\infty \bigg(\frac {(2n-1)!!}{n!}\bigg)^2 \cdot \frac {256^n\pi}{2^{2n+1}} = \int_{0}^{\frac {\pi}{2}} \frac {d\mu}{\sqrt {1-k^2\sin^2(\mu)}}

Where k R k \in \R . Find k \sqrt {k} .

NOTE - ( ) ! ! (\cdot)!! denotes the double factorial .

I found this problem on Jens Fehlau's channel Flammable Maths. It is not original.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

N. Aadhaar Murty
Nov 28, 2020

As shown in the second link provided above, using the Maclaurin series expansion for ( 1 x ) 1 2 , (1-x)^{\frac {-1}{2}},

0 π 2 d μ 1 k 2 sin 2 ( μ ) = n = 0 ( ( 2 n 1 ) ! ! n ! ) k 2 n π Γ ( n + 1 2 ) 2 n + 1 Γ ( n + 1 ) \int_{0}^{\frac {\pi}{2}} \frac {d\mu}{\sqrt {1-k^2\sin^2(\mu)}} = \sum_{n=0}^\infty \bigg(\frac {(2n-1)!!}{n!}\bigg) \cdot \frac {k^{2n}\sqrt {\pi}\Gamma (n+\frac {1}{2})}{2^{n+1}\Gamma(n+1)}

Observe that -

Γ ( 0 + 1 2 ) = π , Γ ( 1 + 1 2 ) = π 2 , Γ ( 2 + 1 2 ) = 3 1 π 2 2 , Γ ( 3 + 1 2 ) = 5 3 1 π 2 3 \Gamma (0+\frac {1}{2}) = \sqrt {\pi}, \Gamma (1+\frac {1}{2}) = \frac {\sqrt {\pi}}{2}, \Gamma (2+\frac {1}{2}) = \frac {3\cdot1\sqrt {\pi}}{2^2} , \Gamma (3+\frac {1}{2}) = \frac {5\cdot3\cdot1\sqrt {\pi}}{2^3}

Γ ( n + 1 2 ) = ( 2 n 1 ) ! ! π 2 n \therefore \Gamma \left(n+\frac {1}{2}\right) = \frac {(2n-1)!!\sqrt {\pi}}{2^n}

by induction. Substituting into the first equation we get

n = 0 ( ( 2 n 1 ) ! ! n ! ) 2 k 2 n π 2 2 n + 1 = 0 π 2 d μ 1 k 2 sin 2 ( μ ) \sum_{n=0}^\infty \bigg(\frac {(2n-1)!!}{n!}\bigg)^2 \cdot \frac {k^{2n}\pi}{2^{2n+1}} = \int_{0}^{\frac {\pi}{2}} \frac {d\mu}{\sqrt {1-k^2\sin^2(\mu)}}

It is clear from the above that k 2 = 256 k^2=256 hence k = 4 . \boxed {\sqrt k=4}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...