Elliptic Mania!

Geometry Level 3

In the ellipse shown, let a a and b b be the lengths of the semi-major and semi-minor axes, respectively.

What is the value of j j for which a 2 + b 2 = 19200 ? a^2 + b^2 = 19200?


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Sep 19, 2018

The whole diagram is symmetrical in a 45 ° 45° line, so we can rotate the whole ellipse and place the bottom right point at ( 0 , 0 ) (0, 0) for a vertical ellipse with a center of ( b , 0 ) (b, 0) , as shown below.

The j j and 2 j 2j sides are hypotenuses of isosceles right triangles, and so we can deduce that the other points on the ellipse are ( 2 j , ± 2 j ) (\sqrt{2}j, \pm \sqrt{2}j) and ( 3 2 2 j , ± 2 2 j ) (\frac{3\sqrt{2}}{2}j, \pm \frac{\sqrt{2}}{2}j) .

Since the equation of a vertical ellipse with center ( b , 0 ) (b, 0) is ( x b ) 2 b 2 + y 2 a 2 = 1 \frac{(x - b)^2}{b^2} + \frac{y^2}{a^2} = 1 , we have ( 2 j b ) 2 b 2 + ( ± 2 j ) 2 a 2 = 1 \frac{(\sqrt{2}j - b)^2}{b^2} + \frac{(\pm \sqrt{2}j)^2}{a^2} = 1 and ( 3 2 2 j b ) 2 b 2 + ( ± 2 2 j ) 2 a 2 = 1 \frac{(\frac{3\sqrt{2}}{2}j - b)^2}{b^2} + \frac{(\pm \frac{\sqrt{2}}{2}j)^2}{a^2} = 1 .

These two equations and the given equation a 2 + b 2 = 19200 a^2 + b^2 = 19200 solve to a = ± 20 30 a = \pm 20 \sqrt{30} , b = 60 2 b = 60 \sqrt{2} , and j = 75 j = \boxed{75} for j > 0 j > 0 .

Rocco Dalto
Sep 17, 2018

If the area A A of the ellipse above

(1) ( j , j ) : j 2 a + j 2 b + j 2 c + j d + j e = 0 (j,j): j^2a + j^2b + j^2c + jd + je = 0

(2) ( 0 , j ) : j c e = 0 c = e j (0,-j): jc - e = 0 \implies \boxed{c = \dfrac{e}{j}}

(3) 2 j , j ) : 4 j 2 a + 2 j 2 b + j 2 c + 2 j d + j e = 0 2j,j): 4j^2a + 2j^2b + j^2c + 2jd + je = 0

(4) ( 2 j , j ) : 4 j 2 a 2 j 2 b + j 2 c + 2 j d j e = 0 (2j,-j): 4j^2a - 2j^2b + j^2c + 2jd - je = 0

Subtracting (4) from (3) 2 j b + e = 0 b = e 2 j \implies 2jb + e = 0 \implies \boxed{b = -\dfrac{e}{2j}}

Replacing c = e j c = \dfrac{e}{j} and b = e 2 j b = -\dfrac{e}{2j} into equations (1) and (3) \implies

2 j a + 2 d = 3 e 2ja + 2d = -3e

4 j a + 2 d = e 4ja + 2d = -e

d = 5 2 e \implies \boxed{d = -\dfrac{5}{2}e} and a = e j \boxed{a = \dfrac{e}{j}}

1 j x 2 1 2 j x y + 1 j y 2 5 2 x + y = 0 \implies \dfrac{1}{j}x^2 - \dfrac{1}{2j}xy + \dfrac{1}{j}y^2 - \dfrac{5}{2}x + y = 0

2 x 2 x y + 2 y 2 5 j x + 2 j y = 0 \implies 2x^2 - xy + 2y^2 - 5jx + 2jy = 0

Let

x = x cos ( θ ) y sin ( θ ) x = x'\cos(\theta) - y'\sin(\theta)

y = x sin ( θ ) + y cos ( θ ) y = x'\sin(\theta) + y'\cos(\theta)

2 ( x 2 cos 2 ( θ ) sin ( 2 θ ) x y + y 2 sin 2 ( θ ) ) ( ( x 2 y 2 2 ) sin ( 2 θ ) + cos ( 2 θ ) x y ) 2(x'^2\cos^2(\theta) - \sin(2\theta)x'y' + y'^2\sin^2(\theta)) - ((\dfrac{x'^2 - y'^2}{2})\sin(2\theta) + \cos(2\theta)x'y') + 2 ( x 2 cos 2 ( θ ) ) + sin ( 2 θ ) x y + y 2 sin 2 ( θ ) ) 5 j ( x cos ( θ ) y sin ( θ ) ) + 2 j ( x sin ( θ ) + y cos ( θ ) ) = 0 + 2(x'^2\cos^2(\theta)) + \sin(2\theta)x'y' + y'^2\sin^2(\theta)) - 5j(x'\cos(\theta) - y'\sin(\theta)) + 2j(x'\sin(\theta) + y'\cos(\theta)) = 0

Setting x y x'y' terms to zero cos ( 2 θ ) = 0 θ = π 4 \implies \cos(2\theta) = 0 \implies \theta = \dfrac{\pi}{4}

\implies

x = 1 2 ( x y ) x = \dfrac{1}{\sqrt{2}}(x' - y')

y = 1 2 ( x + y ) y = \dfrac{1}{\sqrt{2}}(x' + y')

3 x 2 + 5 y 2 3 2 j x + 7 2 j y = 0 3 ( x j 2 ) 2 + 5 ( y + 7 5 2 j ) 2 = 32 j 2 5 \implies 3x'^2 + 5y'^2 - 3\sqrt{2}jx' + 7\sqrt{2}jy' = 0 \implies 3(x' - \dfrac{j}{\sqrt{2}})^2 + 5(y' + \dfrac{7}{5\sqrt{2}}j)^{2} = \dfrac{32j^{2}}{5}

( x j 2 ) 2 ( 32 j 2 15 ) + ( y + 7 5 2 j ) 2 ( 32 j 2 25 ) \implies \dfrac{(x' - \dfrac{j}{\sqrt{2}})^2}{(\dfrac{32j^2}{15})} + \dfrac{(y' + \dfrac{7}{5\sqrt{2}}j)^2}{(\dfrac{32j^{2}}{25})}

a = 4 2 j 15 \implies a = \dfrac{4\sqrt{2}j}{\sqrt{15}} and b = 4 2 j 5 a 2 + b 2 = 256 75 j 2 = 19200 j = 75 b = \dfrac{4\sqrt{2}j}{5} \implies a^2 + b^2 = \dfrac{256}{75}j^{2} = 19200 \implies j = \boxed{75} .

Vinod Kumar
Sep 25, 2018

Find the intersections of line y=x-b with ellipse as (0,-b) and {(2ba^2/(a^2+b^2)), b(a^2-b^2)/(a^2+b^2)}. The length of the chord between these two points is set equal to integer 2j.

Setting a^2+b^2=19200 and defining the i=(√2)b as the new constant , we get the following, Diophantine equation;

i^3=38400(i-j).

Solution is i=120 and j=75.

Answer=75.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...