Elliptic Mania.

Level 2

Find the value of j j for which the area of the ellipse above is A e = 4704 π 1 5 3 2 A_{e} = \dfrac{4704\pi}{15^{\frac{3}{2}}} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Björn Carlsson
Sep 22, 2018

Great problems! I use a different approach. First I do like you (but use matrices) to obtain the implicit equation of the ellipse (avoiding letting it pass through origo though). Then I use a general formula, which is rather easily proven, that the area of an ellipse A x 2 + B x y + C y 2 + D x + E x = 1 Ax^{2} + Bxy + Cy^{2} + Dx + Ex = 1 equals 2 π ( A C B 2 + A E 2 + C D 2 B D E ) ( 4 A C B 2 ) 3 / 2 \frac{2π(AC - B^{2} + AE^{2} + CD^{2} - BDE)}{(4AC - B^{2})^{3/2}} .

In this case (with origin at the point inside the elllipse) it yielded 32 15 π 75 k 2 = 4704 π 15 15 \frac{32\sqrt{15}π}{75} k^{2} = \frac{4704π}{15\sqrt{15}} ⟹ k = 7 )

Rocco Dalto
Sep 17, 2018

For the area A A of the ellipse above

(1) ( j , j ) : j 2 a + j 2 b + j 2 c + j d + j e = 0 (j,j): j^2a + j^2b + j^2c + jd + je = 0

(2) ( 0 , j ) : j c e = 0 c = e j (0,-j): jc - e = 0 \implies \boxed{c = \dfrac{e}{j}}

(3) 2 j , j ) : 4 j 2 a + 2 j 2 b + j 2 c + 2 j d + j e = 0 2j,j): 4j^2a + 2j^2b + j^2c + 2jd + je = 0

(4) ( 2 j , j ) : 4 j 2 a 2 j 2 b + j 2 c + 2 j d j e = 0 (2j,-j): 4j^2a - 2j^2b + j^2c + 2jd - je = 0

Subtracting (4) from (3) 2 j b + e = 0 b = e 2 j \implies 2jb + e = 0 \implies \boxed{b = -\dfrac{e}{2j}}

Replacing c = e j c = \dfrac{e}{j} and b = e 2 j b = -\dfrac{e}{2j} into equations (1) and (3) \implies

2 j a + 2 d = 3 e 2ja + 2d = -3e

4 j a + 2 d = e 4ja + 2d = -e

d = 5 2 e \implies \boxed{d = -\dfrac{5}{2}e} and a = e j \boxed{a = \dfrac{e}{j}}

1 j x 2 1 2 j x y + 1 j y 2 5 2 x + y = 0 \implies \dfrac{1}{j}x^2 - \dfrac{1}{2j}xy + \dfrac{1}{j}y^2 - \dfrac{5}{2}x + y = 0

2 x 2 x y + 2 y 2 5 j x + 2 j y = 0 \implies 2x^2 - xy + 2y^2 - 5jx + 2jy = 0

Solving for y y we obtain:

y = 1 4 ( x 2 j ± 1 15 384 j 2 ( 15 x 18 j ) 2 ) y = \dfrac{1}{4}(x - 2j \pm \dfrac{1}{\sqrt{15}}\sqrt{384j^2 - (15x - 18j)^2})

y = 1 4 ( x 2 j + 1 15 384 j 2 ( 15 x 18 j ) 2 ) y = \dfrac{1}{4}(x - 2j + \dfrac{1}{\sqrt{15}}\sqrt{384j^2 - (15x - 18j)^2}) for the portion of the ellipse above the line y = x 2 j 4 y = \dfrac{x - 2j}{4} .

Setting 384 j 2 ( 15 x 18 j ) 2 = 0 x = 2 15 ( 9 ± 4 6 ) j 384j^{2} - (15x - 18j)^{2} = 0 \implies x = \dfrac{2}{15}(9 \pm 4\sqrt{6})j are the points of intersection of the ellipse and the line y = x 2 j 4 y = \dfrac{x - 2j}{4} .

Letting a = 2 15 ( 9 4 6 ) j a = \dfrac{2}{15}(9 - 4\sqrt{6})j and b = 2 15 ( 9 + 4 6 ) j b = \dfrac{2}{15}(9 + 4\sqrt{6})j the area of the ellipse is A e = 2 4 15 a b 384 j 2 ( 15 x 18 j ) 2 ) A_{e} = \dfrac{2}{4\sqrt{15}}\displaystyle\int_{a}^{b} \sqrt{384j^2 - (15x - 18j)^2})

Letting 15 x 18 j = 384 j sin ( θ ) d x = 384 15 j cos ( θ ) 15x - 18j = \sqrt{384}j\sin(\theta) \implies dx = \dfrac{\sqrt{384}}{15}j\cos(\theta) \implies

I ( θ ) = 384 15 j 2 cos 2 ( θ ) d θ = 384 30 j 2 ( 1 + cos ( 2 θ ) ) d θ = 192 15 j 2 ( θ + sin ( θ ) cos ( θ ) ) I(\theta) = \dfrac{384}{15}j^2\displaystyle\int \cos^2(\theta) d\theta = \dfrac{384}{30}j^2\displaystyle\int(1 + \cos(2\theta)) d\theta = \dfrac{192}{15}j^2(\theta + \sin(\theta)\cos(\theta))

A e = 96 1 5 3 2 j 2 ( arcsin ( 15 x 18 j 384 ) + ( 15 x 18 j ) 384 j 2 ( 15 x 18 j ) 2 ) 384 ) a b = \implies A_{e} = \dfrac{96}{15^{\frac{3}{2}}}j^2(\arcsin(\dfrac{15x - 18j}{\sqrt{384}}) + \dfrac{(15x - 18j)\sqrt{384j^2 - (15x - 18j)^2})}{384})|_{a}^{b} = 96 π 1 5 3 2 j 2 = 4704 π 1 5 3 2 j = 7 \dfrac{96\pi}{15^{\frac{3}{2}}}j^2 = \dfrac{4704\pi}{15^{\frac{3}{2}}} \implies j = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...