Embrace the Logical Necessities

Logic Level 1

Given:

A B A\Rightarrow B

¬ A C \neg A\Rightarrow C

B C B\wedge C is always false

Given these assumptions, is it always true that B A B\Rightarrow A ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

James Wilson
Jan 14, 2021

By contraposition on ¬ A C , \neg A\Rightarrow C, we obtain ¬ C A . \neg C\Rightarrow A.

B C B\wedge C is always false is equivalent to ¬ ( B C ) . \neg (B\wedge C).

Using one of De Morgan's laws, we have ¬ ( B C ) ¬ B ¬ C \neg (B\wedge C)\Leftrightarrow \neg B \vee \neg C .

We then have ¬ B ¬ C B ¬ C . \neg B \vee \neg C \Leftrightarrow B\Rightarrow \neg C.

Thus, ( B ¬ C ) ( ¬ C A ) . (B\Rightarrow \neg C) \wedge (\neg C \Rightarrow A).

By transitivity of implication, B A . B\Rightarrow A.

Hamana Hamana
Jan 20, 2021

Starting from ¬ A C \lnot A \implies C .

Because B C B \wedge C is always false, ¬ A ¬ B C \lnot A \implies \lnot B \wedge C . But then ¬ A ¬ B \lnot A \implies \lnot B ; contraposition then implies that B A B\implies A .

Nathaniel Arnest
Mar 14, 2021

Assume B B .

Since B C B\wedge C must be false, we have ¬ C \neg C .

Since ¬ A C \neg A \Rightarrow C is equivalent to A C A\vee C ,
¬ C \neg C gives us A A .

Thus, B A B\Rightarrow A

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...