We are given sin ( 2 θ ) = 3 1 , and if the value of sin 6 θ + cos 6 θ is the form of b a for coprime positive integers. Find the value of a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
very short and simple! Good job Mudit.
Noting that a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) , sin 2 ( θ ) + cos 2 ( θ ) = 1 and
sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) we find that
sin 6 ( θ ) + cos 6 ( θ ) =
( sin 2 ( θ ) + cos 2 ( θ ) ) ∗ ( sin 4 ( θ ) − sin 2 ( θ ) cos 2 ( θ ) + cos 4 ( θ ) ) =
( s i n 2 ( θ ) + cos 2 ( θ ) ) 2 − 3 sin 2 ( θ ) cos 2 ( θ ) =
1 − 3 ∗ 4 sin 2 ( 2 θ ) = 1 − ( 4 3 ) ( 3 1 ) 2 = 1 − 1 2 1 = 1 2 1 1 .
Thus a + b = 1 1 + 1 2 = 2 3 .
sin 2 θ = 3 1 ⇒ cos 2 θ = 3 2 2 ⇒ 2 cos 2 θ − 1 = 3 2 2
⇒ cos 2 θ = 2 1 + 3 2 ⇒ sin 2 θ = 2 1 − 3 2
sin 6 θ + cos 2 θ = ( 2 1 − 3 2 ) 3 + ( 2 1 + 3 2 ) 3
= ( 8 1 − 3 ( 4 1 ) ( 3 2 ) + 3 ( 2 1 ) ( 9 2 ) − 2 7 2 2 ) + ( 8 1 + 3 ( 4 1 ) ( 3 2 ) + 3 ( 2 1 ) ( 9 2 ) + 2 7 2 2 )
= 2 ( 8 1 + 3 1 ) = 1 2 1 1
⇒ a + b = 2 3
Factoring the sum of cubes:
s i n 6 θ + c o s 6 θ = ( s i n 2 θ + c o s 2 θ ) ( s i n 4 θ − s i n 2 θ ∗ c o s 2 θ + c o s 4 θ )
= s i n 4 θ − s i n 2 θ ∗ c o s 2 θ + c o s 4 θ
= ( c o s 2 θ − s i n 2 θ ) 2 + s i n 2 θ ∗ c o s 2 θ
= ( c o s 2 2 θ ) + 4 1 s i n 2 2 θ
= ( 1 − s i n 2 2 θ ) + 4 1 s i n 2 2 θ
= ( 1 − 9 1 ) + 3 6 1
= 9 8 + 3 6 1
= 3 6 3 2 + 1
= 3 6 3 3 = 1 2 1 1
Thus, a = 1 1 , b = 1 2 , a + b = 2 3
( s i n 2 θ + c o s 2 θ ) 3 = s i n 6 θ + c o s 6 θ + 3 ( s i n 2 θ c o s 2 θ ) ( s i n 2 θ + c o s 2 θ ) Using sin2 θ = 2sin θ cos θ ⇒ sin 6 θ + c o s 6 θ = 1 − 4 3 s i n 2 2 θ = 1 − 1 2 1 = 1 2 1 1
s i n 2 θ = 2 . s i n θ . c o s θ = 3 1 . . . . . . . . . ( 1 ) s i n 2 θ + c o s 2 θ = 1 . . . . . . . . . . . . . . . . ( 2 ) s i n 6 θ + c o s 6 θ ⇒ ( s i n 2 θ + c o s 2 θ ) 3 − 3 s i n 2 θ c o s 2 θ ( s i n 2 θ + c o s 2 θ ) P u t t i n g t h e v a l u e s f r o m ( 1 ) a n d ( 2 ) ⇒ 1 3 − 3 . { 6 1 } 2 . ( 1 ) ⇒ 1 − 1 2 1 ⇒ 1 2 1 1 L e t 1 2 1 1 b e r e p r e s e n t e d a s b a F i n a l l y , T h e a n s w e r w i l l b e a + b i . e . 2 3
sin2A= 2sinAcosA
→ sinAcosA= 1/6
Also sin^6A + cos^6A = (sin^2A + cos^2A)^3 - 3sin^2Acos^2 A( sin^2A + cos^2A)
substitute value of sinAcosA nget d ans.
why are you leaving the proof in half complete it dont make it as a mystery
Log in to reply
sin^6A+ cos^6 A=1-3sin^2A cos^2A =\frac{1}{4}[4-3(2sin^2A cos^2A)^2] = 1-3(\frac{1}{3})^2 ÷4 = 1-(\frac{1}{12}) =11÷12
Problem Loading...
Note Loading...
Set Loading...
another easy solution: sin 6 x + cos 6 x = ( sin 2 x + cos 2 x ) 3 − 3 sin 2 x cos 2 x ( sin 2 x + cos 2 x ) = 1 − 4 3 sin 2 2 x × 1 .On substituting values we get = 1 − 1 2 1 = 1 2 1 1