The -decay process, discovered around 1900, is basically the decay of a neutron . In the laboratory, a proton and an electron are observed as the decay products of the neutron. Therefore, considering the decay of a neutron as a two-body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has a continuous spectrum. Considering a three-body decay process, i.e. , around 1930, Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino to be massless and possessing negligible energy, and the neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the electron is eV. The kinetic energy carried by the proton is only the recoil energy.
What is the maximum energy of the anti-neutrino?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The anti-neutrino was first postulated in 1930 by Wolfgang Pauli to explain the apparent violation of conservation of energy and momentum in beta decay. Therefore, the maximum energy of the anti-neutrino is nearly that of the electron.