Engineering Geometry #2

Geometry Level 4

In the image above, given that the circle with center O 1 , C 1 O_{1}, C_{1} and the circle with center O 2 , C 2 O_{2}, C_{2} are identical with points O 1 O_{1} and O 2 O_{2} being reflections of each other on the radical axis of C 1 C_{1} and C 2 C_{2} . The radius of the circles C 1 C_{1} and C 2 , r = 25 C_{2}, r=25 . Also, A B = B C = 40 |AB|=|BC|=40 with Δ A B C \Delta ABC being symmetrical about the radical axis of C 1 C_{1} and C 2 C_{2} . We also know that O 1 P A C O_{1}P \perp AC and O 1 P = 7 |O_{1}P|=7 . Upon connecting the centers O 1 O_{1} and O 2 O_{2} , the length of the segment O 1 O 2 = a b |O_{1}O_{2}|=\cfrac{a}{b} , such that a a and b b are co-prime positive integers.

Compute a + b a+b .

This is part of the set Things Get Harder .


The answer is 697.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Donglin Loo
Jan 28, 2018

Suppose that O 1 X A B O_{1}X\perp AB ,

Since A O 1 = O 1 B AO_{1}=O_{1}B

then A X = X B = 20 AX=XB=20

Also, A O 1 X = X O 1 B AO_{1}X=XO_{1}B

Then, let A O 1 X = X O 1 B = θ \angle AO_{1}X=\angle XO_{1}B=\theta

s i n θ = 20 25 = 4 5 sin\theta=\cfrac{20}{25}=\cfrac{4}{5}

c o s 2 θ = 1 2 ( s i n θ ) 2 = 1 2 ( 4 5 ) 2 = 7 25 < 0 cos2\theta=1-2(sin\theta)^{2}=1-2(\cfrac{4}{5})^{2}=\cfrac{-7}{25}<0

9 0 < 2 θ < 18 0 90^{\circ}<2\theta<180^{\circ}

2 θ = 18 0 cos 1 7 25 2\theta=180^{\circ}-\cos^{-1}\cfrac{7}{25}

Let A O 1 R = α \angle AO_{1}R=\alpha

sin α = 7 25 \sin\alpha=\cfrac{7}{25}

0 < α < 9 0 0^{\circ}<\alpha<90^{\circ}

α = sin 1 7 25 \alpha=\sin^{-1}\cfrac{7}{25}


Let B O 1 Q = β \angle BO_{1}Q=\beta

α + 2 θ + β = 18 0 \alpha+2\theta+\beta=180^{\circ}

sin 1 7 25 + 18 0 cos 1 7 25 + β = 18 0 \sin^{-1}\cfrac{7}{25}+180^{\circ}-\cos^{-1}\cfrac{7}{25}+\beta=180^{\circ}

β = cos 1 7 25 sin 1 7 25 \beta=\cos^{-1}\cfrac{7}{25}-\sin^{-1}\cfrac{7}{25}

β = ( cos 1 7 25 + sin 1 7 25 ) 2 sin 1 7 25 \beta=(\cos^{-1}\cfrac{7}{25}+\sin^{-1}\cfrac{7}{25})-2\sin^{-1}\cfrac{7}{25}

β = 9 0 2 sin 1 7 25 \beta=90^{\circ}-2\sin^{-1}\cfrac{7}{25}

β = 9 0 2 α \beta=90^{\circ}-2\alpha

cos β = cos ( 9 0 2 α ) \cos\beta=\cos(90^{\circ}-2\alpha)

cos β = sin 2 α \cos\beta=\sin2\alpha

cos β = 2 sin α cos α \cos\beta=2\sin\alpha\cos\alpha

cos β = 2 ( 7 25 ) ( 24 25 ) \cos\beta=2(\cfrac{7}{25})(\cfrac{24}{25})

cos β = 336 625 \cos\beta=\cfrac{336}{625}


cos β = O 1 Q 25 \cos\beta=\cfrac{O_{1}Q}{25}

O 1 Q 25 = 336 625 \cfrac{O_{1}Q}{25}=\cfrac{336}{625}

O 1 Q = 336 25 O_{1}Q=\cfrac{336}{25}

O 1 O 2 = 2 × 336 25 = 672 25 O_{1}O_{2}=2\times\cfrac{336}{25}=\cfrac{672}{25}

So, a + b = 672 + 25 = 697 a+b=672+25=697

Rab Gani
Apr 14, 2018

The mirror line through B is the perpendicular bisector of O1O2. So that O1O2 = 2 PQ. PQ = 25 sin O1BQ, < O1BQ = <PO1B, <PO1B= <AO1B – cos -1(7/25) Angle AO1B can be calculated by cos rule, cos AO1B = (〖25〗^2+〖25〗^2-〖40〗^2)/2(25)(25) =-7/25. So < O1BQ = cos -1(- 7/25) - cos -1(7/25) = 32.52. O1O2 = 2 (25) sin32.52 = 26.88 = 672/25. So a+b=697

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...