Enjoy!

Geometry Level 4

k = 1 15 cis 2 k 1 ( π 36 ) \large\sum_{k=1}^{15} \textrm{cis}^{2k-1}\left( \frac{\pi}{36} \right)

Compute the imaginary part of the summation above.

Notation

  • cis θ = cos θ + i sin θ \textrm{cis }\theta = \cos \theta + i \sin\theta .
1 4 sin π 36 \frac{1}{4 \sin \frac{\pi}{36}} sin π 36 \sin \frac{\pi}{36} 1 4 \frac{1}{4} 2 + 3 4 sin π 36 \frac{2+\sqrt{3}}{4 \sin \frac{\pi}{36}} 2 3 4 sin π 36 \frac{2-\sqrt{3}}{4 \sin \frac{\pi}{36}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First note that

cis θ = cos θ + i sin θ cis 2 k 1 θ = cos [ ( 2 k 1 ) θ ] + i sin [ ( 2 k 1 ) θ ] . \begin{aligned} \textrm{cis } \theta & = \cos \theta + i \sin\theta \Rightarrow \\ \Rightarrow \textrm{cis }^{2k-1} \theta & = \cos [( 2k-1) \theta] + i \sin [( 2k-1 ) \theta]. \\ \end{aligned}

And then

S = k = 1 15 cis 2 k 1 ( π 36 ) = k = 1 15 cis [ ( 2 k 1 ) π 36 ] . \begin{aligned} S & = \large\sum_{k=1}^{15} \textrm{cis}^{2k-1}\left( \frac{\pi}{36} \right) \\ & = \large\sum_{k=1}^{15} \textrm{cis} \left[ \frac{(2k-1)\pi}{36} \right]. \\ \end{aligned}

If Im [ S ] \textrm{Im} [S] is the imaginary part of the S S then

Im [ S ] = k = 1 15 sin [ ( 2 k 1 ) π 36 ] . = sin π 36 + sin 3 π 36 + + sin 29 π 36 . \begin{aligned} \textrm{Im} [S] & = \large \sum_{k=1}^{15} \sin \left[ \frac{(2k-1)\pi}{36} \right]. \\ & = \sin \frac{\pi}{36} + \sin \frac{3\pi}{36} + \ldots +\sin \frac{29\pi}{36}.\\ \end{aligned}

Multiplying both the sides by 2 sin π 36 -2\sin \frac{\pi}{36}

2 sin π 36 Im [ S ] = 2 sin π 36 sin π 36 2 sin π 36 sin 3 π 36 2 sin π 36 sin 29 π 36 = 2 sin 2 π 36 + [ cos 2 π 18 cos π 18 ] + [ cos 3 π 18 cos 2 π 18 ] + + [ cos 15 π 18 cos 14 π 18 ] = 2 sin 2 π 36 cos π 18 + cos 15 π 18 = 2 sin 2 π 36 cos 2 π 36 + cos 5 π 6 = 2 sin 2 π 36 ( 1 2 sin 2 π 36 ) + cos 5 π 6 . \begin{aligned} -2\sin \frac{\pi}{36} \textrm{Im} [S] & = -2\sin \frac{\pi}{36} \sin \frac{\pi}{36} -2\sin \frac{\pi}{36} \sin \frac{3\pi}{36} - \ldots -2\sin \frac{\pi}{36} \sin \frac{29\pi}{36}\\ & =-2\sin^2 \frac{\pi}{36} + \biggl[ \cos \frac{2\pi}{18}-\cos \frac{\pi}{18} \biggl] +\biggl[ \cos \frac{3\pi}{18}-\cos \frac{2\pi}{18} \biggl] +\ldots\\ & \ldots +\biggl[ \cos \frac{15\pi}{18}-\cos \frac{14\pi}{18} \biggl] \\ & =-2\sin^2 \frac{\pi}{36} - \cos \frac{\pi}{18} + \cos \frac{15\pi}{18}\\ & =-2\sin^2 \frac{\pi}{36} - \cos \frac{2\pi}{36} + \cos \frac{5\pi}{6}\\ & =-2\sin^2 \frac{\pi}{36} - (1-2\sin^2 \frac{\pi}{36}) + \cos \frac{5\pi}{6}.\\ \end{aligned}

Thus

2 sin π 36 Im [ S ] = 1 3 2 Im [ S ] = 2 + 3 4 sin π 36 . \begin{aligned} -2\sin \frac{\pi}{36} \textrm{Im} [S] & =-1 - \frac{\sqrt3}{2}\\ \textrm{Im} [S] & = \boxed{\dfrac{2+\sqrt{3}}{4 \sin \frac{\pi}{36}}}.\\ \end{aligned}

How did you get the motivation to multiply both sides by -2sin?

Roni Jaira - 5 years, 5 months ago

Log in to reply

Roni... try this problem:

https://brilliant.org/problems/day-7-seven-terms-in-a-tricky-trig-sum/?group=R7BPCpcARbs3&ref_id=1049242

;-)

Giancarlo Miragliotta - 5 years, 5 months ago
Chew-Seong Cheong
Dec 24, 2015

We note that cis θ = c o s θ + i sin θ = e i θ \text{cis } \theta = cos \theta + i \sin \theta = e^{i\theta} . Therefore,

k = 1 15 cis 2 k 1 π 36 = k = 1 15 e i ( 2 k 1 ) π 36 This is a GP with first term e i π 36 and common ratio e i π 18 = e i π 36 ( 1 e i 15 π 18 ) 1 e i π 18 = ( cos π 36 + i sin π 36 ) ( 1 cos 5 π 6 i sin 5 π 6 ) 1 cos π 18 i sin π 18 = ( cos π 36 + i sin π 36 ) ( 1 cos 5 π 6 i sin 5 π 6 ) ( 1 cos π 18 + i sin π 18 ) ( 1 cos π 18 i sin π 18 ) ( 1 cos π 18 + i sin π 18 ) = ( cos π 36 + i sin π 36 ) ( 1 + 3 2 i 1 2 ) ( 1 ( 1 2 sin 2 π 36 ) + i 2 sin π 36 cos π 36 ) ( 1 cos π 18 ) 2 + sin 2 π 18 = ( cos π 36 + i sin π 36 ) ( 2 + 3 i ) sin π 36 ( sin π 36 + i cos π 36 ) 2 2 cos π 18 = sin π 36 ( 2 + 3 i ) ( cos π 36 sin π 36 sin π 36 cos π 36 + i ( sin 2 π 36 + cos 2 π 36 ) ) 4 sin 2 π 36 = 1 + i ( 2 + 3 ) 4 sin π 36 \begin{aligned} \sum_{k=1}^{15} \text{cis }^{2k-1} \frac{\pi}{36} & = \sum_{k=1}^{15} e^{i\frac{(2k-1)\pi}{36}} \quad \quad \small \color{#3D99F6}{\text{This is a GP with first term }e^{i\frac{\pi}{36}} \text{ and common ratio }e^{i\frac{\pi}{18}}} \\ & = \frac{e^{i\frac{\pi}{36}}\left(1 - e^{i\frac{15\pi}{18}}\right)}{1- e^{i\frac{\pi}{18}}} \\ & = \frac{\left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36}\right) \left(1 - \cos \frac{5\pi}{6} - i \sin \frac{5\pi}{6} \right)}{1 - \cos \frac{\pi}{18} - i \sin \frac{\pi}{18}} \\ & = \frac{\left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36}\right) \left(1 - \cos \frac{5\pi}{6} - i \sin \frac{5\pi}{6} \right)\left(1 - \cos \frac{\pi}{18} + i \sin \frac{\pi}{18}\right)}{\left(1 - \cos \frac{\pi}{18} - i \sin \frac{\pi}{18} \right) \left(1 - \cos \frac{\pi}{18} + i \sin \frac{\pi}{18}\right)} \\ & = \frac{\left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36}\right) \left(1 + \frac{\sqrt{3}}{2} - i \frac{1}{2} \right)\left(1 - (1 - 2 \sin^2 \frac{\pi}{36}) + i 2 \sin \frac{\pi}{36} \cos \frac{\pi}{36} \right)}{\left(1 - \cos \frac{\pi}{18} \right)^2 + \sin^2 \frac{\pi}{18}} \\ & = \frac {\left(\cos \frac{\pi}{36} + i \sin \frac{\pi}{36}\right) \left(2 + \sqrt{3} - i \right) \sin \frac{\pi}{36} \left(\sin \frac{\pi}{36} + i \cos \frac{\pi}{36}\right)}{2 - 2 \cos \frac{\pi}{18}} \\ & = \frac { \sin \frac{\pi}{36} \left(2 + \sqrt{3} - i \right) \left(\cos \frac{\pi}{36} \sin \frac{\pi}{36} - \sin \frac{\pi}{36} \cos \frac{\pi}{36} + i(\sin^2 \frac{\pi}{36} + \cos^2 \frac{\pi}{36}) \right)}{4 \sin^2 \frac{\pi}{36}} \\ & = \frac{1+i(2+\sqrt{3})}{4 \sin \frac{\pi}{36}} \end{aligned}

( k = 1 15 cis 2 k 1 π 36 ) = 2 + 3 4 sin π 36 \begin{aligned} \Rightarrow \Im \left( \sum_{k=1}^{15} \text{cis }^{2k-1} \frac{\pi}{36}\right) & = \boxed{\dfrac{2+\sqrt{3}}{4 \sin \frac{\pi}{36}}} \end{aligned}

Mr Cheong, you really are the trigonometry god!!!

Jun Arro Estrella - 5 years, 5 months ago

Log in to reply

Not really. You may Brian Charlesworth better. I am glad that you like the solution.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

I really like how you lay down your solutions Mr Cheong.. you are a living legend and I am grateful to have lived and see it :) Keep it up..

Jun Arro Estrella - 5 years, 5 months ago

Let w = e π i / 36 w=e^{\pi i/36} . Then let S = k = 1 15 w 2 k 1 S=\displaystyle \sum_{k=1}^{15} w^{2k-1} . Using the formula for the sum of a geometric progression we have:

S = w 1 k = 1 15 w 2 k = w 1 w 32 w 2 w 2 1 = w 31 w w 2 1 S=w^{-1} \displaystyle \sum_{k=1}^{15} w^{2k}=w^{-1}\cdot\dfrac{w^{32}-w^2}{w^2-1}=\dfrac{w^{31}-w}{w^2-1}

Now, simplify and rationalize the denominator:

S = ( w 31 w ) ( w 2 1 ) ( w 2 1 ) ( w 2 1 ) = w 29 w 31 w 1 + w 1 w 2 w 2 + 1 = w 29 w 31 w 1 + w 2 2 cos ( π 18 ) S=\dfrac{(w^{31}-w)(w^{-2}-1)}{(w^2-1)(w^{-2}-1)}=\dfrac{w^{29}-w^{31}-w^{-1}+w}{1-w^2-w^{-2}+1}=\dfrac{w^{29}-w^{31}-w^{-1}+w}{2-2\cos\left(\dfrac{\pi}{18}\right)}

Finally, find the real part and the imaginary part, and simplify the denominator using the identity sin ( θ 2 ) = 1 cos θ 2 \sin\left(\dfrac{\theta}{2}\right)=\sqrt{\dfrac{1-\cos \theta}{2}} :

S = cos ( 29 π 36 ) + i sin ( 29 π 36 ) cos ( 31 π 36 ) i sin ( 31 π 36 ) cos ( π 36 ) + i sin ( π 36 ) + cos ( π 36 ) + i sin ( π 36 ) 4 sin 2 ( π 36 ) S=\dfrac{\cos\left(\dfrac{29\pi}{36}\right)+i\sin\left(\dfrac{29\pi}{36}\right)-\cos\left(\dfrac{31\pi}{36}\right)-i\sin\left(\dfrac{31\pi}{36}\right)-\cos\left(\dfrac{\pi}{36}\right)+i\sin\left(\dfrac{\pi}{36}\right)+\cos\left(\dfrac{\pi}{36}\right)+i\sin\left(\dfrac{\pi}{36}\right)}{4\sin^2\left(\dfrac{\pi}{36}\right)}

S = cos ( 29 π 36 ) cos ( 31 π 36 ) + i sin ( 29 π 36 ) i sin ( 31 π 36 ) + 2 i sin ( π 36 ) 4 sin 2 ( π 36 ) S=\dfrac{\cos\left(\dfrac{29\pi}{36}\right)-\cos\left(\dfrac{31\pi}{36}\right)+i\sin\left(\dfrac{29\pi}{36}\right)-i\sin\left(\dfrac{31\pi}{36}\right)+2i\sin\left(\dfrac{\pi}{36}\right)}{4\sin^2\left(\dfrac{\pi}{36}\right)}

So, the imaginary part is:

Im ( S ) = sin ( 29 π 36 ) sin ( 31 π 36 ) + 2 sin ( π 36 ) 4 sin 2 ( π 36 ) \text{Im}(S)=\dfrac{\sin\left(\dfrac{29\pi}{36}\right)-\sin\left(\dfrac{31\pi}{36}\right)+2\sin\left(\dfrac{\pi}{36}\right)}{4\sin^2\left(\dfrac{\pi}{36}\right)}

Use the sum to product formulas:

Im ( S ) = 2 cos ( 5 π 6 ) sin ( π 36 ) + 2 sin ( π 36 ) 4 sin 2 ( π 36 ) \text{Im}(S)=\dfrac{2\cos\left(\dfrac{5\pi}{6}\right)\sin\left(-\dfrac{\pi}{36}\right)+2\sin\left(\dfrac{\pi}{36}\right)}{4\sin^2\left(\dfrac{\pi}{36}\right)}

Im ( S ) = 2 + 3 4 sin ( π 36 ) \text{Im}(S)=\dfrac{2+\sqrt{3}}{4\sin\left(\dfrac{\pi}{36}\right)}

did it a similar way too long enough sigh.

Mardokay Mosazghi - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...