Enjoy geometry with rectangle, circle and parabola.....

Geometry Level 5

The points of intersection of the circle x 2 + y 2 = 5 x^{2} +y^{2} = 5 with the parabolas y 2 = 4 5 x y^{2} = 4\sqrt5 x and y 2 = 4 5 x y^{2} = -4\sqrt5 x form a rectangle. Find the area of the rectangle.

Give answer correct to two decimal places.

Find more geometry here .


The answer is 4.58.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 10, 2018

Given that { x 2 + y 2 = 5 . . . ( 1 ) y 2 = ± 4 5 x . . . ( 2 ) \begin{cases} x^2 + y^2 = 5 & ...(1) \\ y^2 = \pm 4\sqrt 5 x & ...(2) \end{cases} . Substitute ( 2 ) (2) in ( 1 ) (1) :

x 2 ± 4 5 x = 5 x 2 ± 4 5 x 5 = 0 \begin{aligned} x^2 \pm 4\sqrt 5 x & = 5 \\ x^2 \pm 4\sqrt 5 x - 5 & = 0 \end{aligned}

x = ± 4 5 ± 80 + 20 2 = ± ( 5 2 5 ) Only 2 acceptable solutions. \begin{aligned} \implies x & = \pm \frac {4\sqrt 5 \pm \sqrt{80+20}}2 \\ & = \pm (5-2\sqrt 5) & \small \color{#3D99F6} \text{Only 2 acceptable solutions.}\end{aligned}

Then we have:

x 1 = { 5 + 2 5 y 1 = ± 4 5 ( 5 + 2 5 ) = ± 2 5 5 10 5 2 5 y 1 = ± 4 5 ( 5 2 5 ) = ± 2 5 5 10 \begin{aligned} x_1 & = \begin{cases} - 5 + 2\sqrt 5 & \implies y_1 = \pm \sqrt{-4\sqrt 5(-5+2\sqrt 5}) & = \pm 2\sqrt{5\sqrt 5-10} \\ 5 - 2\sqrt 5 & \implies y_1 = \pm \sqrt{4\sqrt 5(5-2\sqrt 5}) & = \pm 2\sqrt{5\sqrt 5-10} \end{cases} \end{aligned}

Area of the rectangle A = 2 x 1 × 2 y 1 = 4 ( 5 2 5 ) ( 2 5 5 10 ) 4.59 A = 2\left|x_1\right|\times 2\left|y_1\right| = 4 \left(5-2\sqrt 5\right)\left(2\sqrt{5\sqrt 5-10}\right) \approx \boxed{4.59} .

Aniket Verma
Mar 4, 2015

For convenience let 5 = a \sqrt5 = a

we can sea that total required area is 4 4 × \times (area of gray region).

now find the point of intersection which is in the first quadrant by solving equations x 2 + y 2 = a 2 x^{2} + y^{2} = a^{2} and y 2 = 4 a x y^{2} = 4ax .

we get the point of intersection as ( a ( 5 2 ) , 2 a ( 5 2 ) 1 / 2 ) (a(\sqrt5 - 2) , 2a(\sqrt5 - 2)^{1/2})

therefore the area of gray region = = 2 a 2 ( 5 2 ) 3 / 2 2a^{2}(\sqrt5 - 2)^{3/2} = = 1.146 1.146

hence total required area = = 4 × 1.146 4\times 1.146 = = 4.584 4.584

Hana Wehbi
Mar 10, 2018

We can tell from plotting the graph that the length of the rectangle is: 2.173 × 2 = 4.346 and the width is 0.581 × 2 = 1.162 2.173\times2 =4.346 \text { and the width is } 0.581\times 2= 1.162 .

Thus, the area of the rectangle is: 4.346 × 1.162 = 4.58 4.346\times 1.162= 4.58 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...