Enjoying conics with integration!

Calculus Level 4

Let P P be a point (other than the origin) lying on the parabola y = x 2 y=x^2 such that the normal line to the parabola at P P will intersect the parabola at another point Q Q .

What is the minimum possible value for the area bounded by the line P Q PQ and the parabola?

4 3 \frac{4}{3} 1 2 \frac{1}{2} 4 7 \frac{4}{7} 3 5 \frac{3}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nicola Mignoni
Apr 3, 2018

Let's consider P = ( t , t 2 ) , t R P=(t,t^2), \hspace{5pt} t \in \mathbb{R} a generic point lying on y = x 2 y=x^2 . The line tangent to the parabola and passing from P P has equation y t = m x + q t y_t=mx+q_t , where m = 2 t m=2t is the slope of the parabola in P P . Let's impose that the line pass through P P

t 2 = 2 t t + q t q t = t 2 y t = 2 t x t 2 \displaystyle t^2=2t \cdot t +q_t \hspace{3pt} \Longrightarrow \hspace{3pt} q_t=-t^2 \hspace{3pt} \Longrightarrow \hspace{3pt} y_t=2tx-t^2

It's well-known that the if a line has slope m m , than the slope of the normal is 1 m -\frac{1}{m} . So, the normal to y n y_n is y n = x 2 t + q n y_n=-\frac{x}{2t}+q_n . As done before, we impose the passage through P P to find q n q_n , so

y n = x 2 t + t 2 + 1 2 \displaystyle y_n=-\frac{x}{2t}+t^2+\frac{1}{2}

The normal line intersect the parabola at Q Q , so we solve the system

{ y = x 2 t + t 2 + 1 2 y = x 2 x 2 = x 2 t + t 2 + 1 2 x 1 = t , x 2 = 2 t 2 1 2 t \displaystyle \begin{cases} \displaystyle y=-\frac{x}{2t}+t^2+\frac{1}{2} \\[5pt] \displaystyle y=x^2 \end{cases} \hspace{5pt} \Longrightarrow \hspace{5pt} x^2=-\frac{x}{2t}+t^2+\frac{1}{2} \hspace{5pt} \Longrightarrow \hspace{5pt} \displaystyle x_1=t, \hspace{5pt} x_2=\frac{-2t^2-1}{2t}

where x 1 x_1 is exactly the x x- coordinate of P P and x 2 x_2 is the x x- coordinate of Q Q . Now, we can evaluate the area A A between y n y_n and the parabola

A = x 1 x 2 y n x 2 d x = t 2 t 2 1 2 t x 2 t + t 2 + 1 2 x 2 d x = ( 4 t 2 + 1 ) 3 48 t 3 \displaystyle A=\int_{x_1}^{x_2} y_n-x^2 \hspace{3pt} dx = \int_{t}^{\frac{-2t^2-1}{2t}} -\frac{x}{2t}+t^2+\frac{1}{2}-x^2 \hspace{3pt} dx=-\frac{(4 t^2 + 1)^3}{48 t^3}

And, finally, we can solve the minimum problem

m i n ( A ) d A d t = 0 d d t ( ( 4 t 2 + 1 ) 3 48 t 3 ) = 0 1 16 x 4 4 x 2 + 1 4 x 2 1 = 0 x 1 = 1 2 , x 2 = 1 2 , x 3 = i 2 , x 4 = i 2 \displaystyle min(A) \hspace{5pt} \Longrightarrow \hspace{5pt} \frac{dA}{dt}=0 \hspace{5pt} \Longrightarrow \hspace{5pt} \frac{d}{dt} \bigg(-\frac{(4 t^2 + 1)^3}{48 t^3}\bigg)=0 \hspace{5pt} \Longrightarrow \hspace{5pt} \frac{1}{16 x^4} - 4 x^2 + \frac{1}{4 x^2} - 1=0 \hspace{5pt} \Longrightarrow \hspace{5pt} x_1=\frac{1}{2}, \hspace{4pt} x_2=-\frac{1}{2}, \hspace{4pt} x_3=\frac{i}{2}, \hspace{4pt} x_4=-\frac{i}{2}

A ( t = x 2 = 1 2 ) = 4 3 \displaystyle A\bigg(t=x_2=-\frac{1}{2}\bigg)=\boxed{\frac{4}{3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...