Enormous number

Find the tens digit of the number 201 2 ( 201 4 2016 ) 2012^{(2014^{2016})} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let N = 201 2 201 4 2016 N=2012^{2014^{2016}} . We need to find N m o d 100 ÷ 10 \lfloor N \bmod 100 \div 10\rfloor . Since gcd ( 2012 , 10 ) 1 \gcd(2012, 10) \ne 1 , we have to consider the factors of 100, that is 4 and 25 separately using Chinese remainder theorem (CRT) .

Factor 4 : N 0 (mod 4) N \equiv 0 \text{ (mod 4)} .

Factor 25 :

N ( 2000 + 12 ) 201 4 2016 (mod 25) 1 2 201 4 2016 m o d ϕ ( 25 ) (mod 25) Since gcd ( 12 , 25 ) = 1 , Euler’s theorem applies. 1 2 201 4 2016 m o d 20 (mod 25) Euler’s totient function ϕ ( 25 ) = 20 1 2 1 4 2016 m o d 20 (mod 25) Since gcd ( 14 , 20 ) 1 , applies CRT. 1 2 16 (mod 25) See note. ( 10 + 2 ) 15 ( 12 ) (mod 25) 2 10 ( 2 5 ) ( 12 ) (mod 25) 24 ( 7 ) ( 12 ) (mod 25) ( 1 ) ( 7 ) ( 12 ) (mod 25) 84 9 16 (mod 25) \begin{aligned} N & \equiv (2000 + 12)^{2014^{2016}} \text{ (mod 25)} \\ & \equiv 12^{\color{#3D99F6}2014^{2016}\bmod \phi (25)} \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }\gcd(12,25) = 1\text{, Euler's theorem applies.} \\ & \equiv 12^{\color{#3D99F6}2014^{2016}\bmod 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(25) = 20 \\ & \equiv 12^{\color{#3D99F6}14^{2016}\bmod 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }\gcd(14,20) \ne 1\text{, applies CRT.} \\ & \equiv 12^{\color{#3D99F6}16} \text{ (mod 25)} & \small \color{#3D99F6} \text{See note.} \\ & \equiv (10+2)^{15}(12) \text{ (mod 25)} \\ & \equiv 2^{10}(2^5)(12) \text{ (mod 25)} \\ & \equiv 24(7)(12) \text{ (mod 25)} \\ & \equiv (-1)(7)(12) \text{ (mod 25)} \\ & \equiv -84 \equiv -9 \equiv 16 \text{ (mod 25)} \end{aligned}

This implies that N 25 n + 16 0 (mod 4) N \equiv 25n + 16 \equiv 0 \text{ (mod 4)} , where n n s an integer, n = 0 \implies n=0 and N 16 (mod 100) N \equiv 16 \text{ (mod 100)} and the tens digit of N N is 1 \boxed{1} .


Note: Let M = 1 4 2016 M = 14^{2016} and we need to find M m o d 20 M \bmod 20 using CRT. We note that M = 1 4 2016 0 (mod 4) M = 14^{2016} \equiv 0 \text{ (mod 4)} and M = 1 4 2016 M = 14^{2016} 4 2016 \equiv 4^{2016} 4 2016 m o d ϕ ( 5 ) \equiv 4^{2016 \bmod \phi (5)} 4 2016 m o d 4 \equiv 4^{2016 \bmod 4} 4 0 1 (mod 5) \equiv 4^0 \equiv 1 \text{ (mod 5)} . Then M 5 m + 1 0 (mod 4) M \equiv 5m+1 \equiv 0 \text{ (mod 4)} m 3 \implies m \equiv 3 and M 16 (mod 20) M \equiv 16 \text{ (mod 20)} .

Very good solution. Better than mine. E.G.

Log in to reply

Thanks. I learned all these from Brilliant.org.

Chew-Seong Cheong - 3 years ago

As you see, that's an enormous number. If written in standard notation, its digits will form a row many miles long. By the way, the last five digits are 21216. Thank you for your interest. E.G.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...