For the end-of-year examinations, Stella wants to bring a bag of candies to share with every student who earns an "A" in her class.
She knows that if there are 2, 3, 4, 5, 6, or even 7 top students, then she should be able to distribute the candies out evenly, and she doesn't want to take any candies home with her.
Given that she is going to bring at least 10 candies, what is the minimum number that she must bring?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Just find the LCM. That's how I did it
To elaborate a little bit, consider the following: If a number is divisible by 4, it is also divisible by 2. If it is divisible by 3 and 2, it is divisible by 6. So that means that putting a 6 and putting a 4 are repetitive for when you multiply them all together. Multiplying 3 times 4 times 5 times 7 is 420, the answer.
I calculated a precise number of 420 candies but i was a bit nervous whether the answer would make sense, so i later figured out that my calculations were correct all along :) Hopefully
2×3=6 2×2=4 Hence the minimum number must be the product of its indivisible factors I.e. 2×5×6×7=420 Does that make sense?
Lowestor least Common Multiple, the key to success
she should distribute the candies evenly to all right . so suppose there are 4 top students then if u consider 420 candies then each student gets 105 candies which is an odd number right . so right option should be 840
Log in to reply
here " evenly " means equally, not odd or even
simply find the L.C.M OF 2,3,4,5,6,7 AND GET THE ansr...
can you send me your solution brifely
Why not 210 as 210 is divisible by all i.e 2,3,4,5,6, and 7 and LCM of them is 210 not 420
Log in to reply
it is not divisible by 4!!!!!!!!!!
210 is not divisible by 4.
Take the lowest common multiple of 2, 3, 4, 5, 6 and 7
=2, 3, 4, 5, 6, 7
(2) = 1, 3, 2, 5, 3, 7
(2) = 1, 3, 1, 5, 3, 7
(3) = 1, 1, 1, 5, 1, 7
(5) = 1, 1, 1, 1, 1, 7
(7) = 1, 1, 1, 1, 1, 1
Thus, LCM = 2 x 2 x 3 x 5 x 7 = 420. This is the least number of candies she must bring
210 is possible
Log in to reply
210 is divisible by all the other factors EXCEPT for 4. So if there were 4 students with A's, then it would not distribute evenly.
to distribute candies evenly if there are 2, 3, 4, 5, 6, or even 7 top students.let the number of candies be n then n should be divisible by 2, 3, 4, 5, 6, and 7 together.
1) a number is divisible by 5 if we have 0 or 5 in last place
2) a number is divisible by 4 if last two digits of number is divisible by 4 and of-course number should be even
so from conditions 1) and 2) last digit should be 0 only. ( because if last digit is 5 it will not be divisible by even numbers 2,4 and 6)
also if a number is divisible by 6 it must be divisible by 2 and 3
so now minimum requirements are last place of number is 0 and it should be divisible by both 6 and 7 i.e. (6*7=42) so the least number comes is 420 which is divisible by 2, 3, 4, 5, 6, and 7 together.
number is 420
Just finding the common factor 2x2x3x5x7=420
LCM of 2,3,4,5,6,7 will come to 420
Since the number of candies can be divided equally among 2, 3, 4, 5, 6 and 7 people, then the least number of candies required is the lowest common multiple of 2, 3, 4, 5, 6 and 7.
Using algorithm method, I know that the LCM of 2, 3, 4, 5, 6, and 7 is 420 .
coorect
Thus she has to bring at least 420 candies.
420 These are not candies but weed...
The LCM of {2,3,4,5,6,7}= 420
Find the LCM of 2,3,4,5,6 and 7.
the least number must be divisible by 2,3,4,5,6,7 and the number is 420.
The LCM of the number is required because only 420 candies can be shared equally among 2,3,4,5,6and7 toppers.
I just can't find the logic of one bringing 420 candies...God! To find the answer,you just have to find the LCM of the numbers which is 420.
minimum number of candies she must bring is 420.
because 420 is lowest common number that can be divided evenly if there are 2,3,4,5,6,7 top students.
420 is LCM of 2,3,4,5,6,7.
find the lcm of the given numbers and that will give you the anser
Just find the LCM of the numbers 2,3,4,5,6and7=420 and that's the answer
The number of candies must be divisible by all n in the set of integers from 2 to 7. The smallest number which satisfies this condition is l c m ( 2 , 3 , 4 , 5 , 6 , 7 ) , which is equivalent to 2 2 × 3 × 5 × 7 = 4 2 0 .
If she brings x candies, x should be divisible by 2 , 3 , 4 , 5 , 6 and 7 to be sure that the candies are equally distributable. Now, the minimum number that is divisible by 2 , 3 , 4 , 5 , 6 , 7 is just l c m ( 2 , 3 , 4 , 5 , 6 , 7 ) = 4 2 0
2, 3, 4, 5, 6, 7 = 2, 3, 2x2, 5, 2x3, 7 and common multiples = 2x3x2x5x7 = 420 Answer
simply get LCM of 2,3,4,5,6,7 which is 420
Use the Ladder method, put 2,3,4,5,6,7 and then factorise to get 2^2x3x5x7 as your LCM. Therefore you get 420 which, incidentally, is 420YOLO!!!! (just saying)
lol, squigi boo
unable to understand the question properly. pls help...
It is a very simple problem. Find the Lowest Common Multiple of the numbers Therefore, LCM {2,3,4,5,6,7}=LCM{4,5,6} * 7 Thus, the LCM= the answer=420
The minimum number of candies she should bring is 420.
taking L.C.M of 2,3,4,5,6, and 7;
we get 420.
Therefore, Stella must bring 420 candies to distribute it out evenly.
As written in the question there can be 2, 3, 4, 5, 6, or even 7 top students. So the answer is the L.C.M of the numbers 2,3, 4, 5, 6, 7 which is 420
find the LCM of the numbers
She has to bring multiples of all number of students(2, 3, 4, 5, 6,7) to distribute candies equally. so find the LCM of 2, 3, 4, 5, 6,7 , which is 420.
the ans must be a multiple of 2,3,4,5,6,7
Just simply get the GCF of 2,3,4,5,6 and 7
so the their GCF is 420
oh sorry its LCM
For such a kind of problems, find the LCM. And that would be the minimum number needed.
We just need to find the L.C.M of the given numbers ie.420 . That is our answer !!
The minimum number which can be divided equally among 2or3or4or5or6or7 students is the LCM of all those numbers
LCM of 2,3,4,5,6,7 is 420
She should be able to candies evenly to 2,3,4,5,6 or 7 students, which means we have to find the least no. divisible by 2.3.4.5.6 and 7 which is their L.C.M - 420
find the LCM of 2,3,4,5,6,7= 420
I took 2 values like 5 & 6 into consideration. Then multiply them, got 30. Then incremented it by 30 like 30,60,90... and thus found the required value/number.
As it clear that she wont take back any candies if there are 2,3 , 4, 5, 6 or even 7 students who top, it is evident that number of candies that she get is Lowest Common Multiple of 2,3,4,5, 6,7 which is 420 .
LCM - Lowest Common Multiple
Number is LCM of 2, 3, 4, 5, 6, 7 = 420
Simply least common multiple of all numbers
1/2 + 1/3 = 4/6 (take only the value of the denominator) 1/6 + 1/4 = 5/12 (same we did at the first) the idea is to get only the common multiple disregarding the numerator 1/12 + 1/5 = 17/60 do this in repetition until 1/7 1/60 + 1/6 = 11/60 1/60 + 1/7 = 67/420 (420) isolating the denominator we have the least common multiple of every number
*isolating the denominator we have the product of the LCM of each number
For Stella to distribute candies among the students evenly , the number of candies should be divisible by the number o toppers. So the solution will be H.C.F of the number of expected toppers. The H.C.F of 2,3,4,5,6,7 is 420
This requires the lowest common multiple of the possible number of students. LCM(2,3,4,5,6,7)=420
Find LCM of 2, 3, 4, 5, 6 and 7 = 420
Given problem amounts to LCM(2,3,4,5,6,7) LCM(2,3,4,6)=12 LCM(5,7,12)=5x7x12=420 420 is the answer
We know that we can evenly distribute between 2,3,4,5,6,7 kids equally. Hence the number should be divisible by them. We need to find the minimum number so we took Least Common Multiple of 2,3,4,5,6,7 which gave us 420.
Problem Loading...
Note Loading...
Set Loading...
The total number of candies she brings should be divisible by 2,3,4,5,6 and 7. Hence, the minimum number of candies that she should bring is the LCM of those numbers, which is 420.