Entangled sequences

Geometry Level 3

Two sequences of real numbers are defined as follows:

{ a 1 = 1 + 5 4 b 1 = 5 5 8 a n + 1 = a n a 1 b n b 1 b n + 1 = b n a 1 + a n b 1 \begin{cases} a_1=\frac{1+\sqrt{5}}{4} \\ b_1=\sqrt{\frac{5-\sqrt{5}}{8}} \\ a_{n+1}=a_na_1-b_nb_1 \\ b_{n+1}=b_na_1+a_nb_1 \end{cases}

Determine a 2018 a_{2018} .


The answer is 0.309.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

It's easy to prove, that a n = cos 36 n a_n=\cos36n , b n = sin 36 n b_n=\sin36n . That explains the recurring cycle of 10 steps, since 10 × 36 = 360 10\times 36=360 .

Now, because 2018= 201 × 10 201\times10 +8, a 2018 = a 8 = cos 72 = 0.309 a_{2018}=a_8=-\cos72=0.309

Similar solution with @Emil Gueorguiev 's

We find that a n = cos n π 5 a_n = \cos \frac {n\pi}5 and b n = sin n π 5 b_n = \sin \frac {n \pi}5 . Let us prove the claim by induction that it is true for all n 1 n \ge 1 .

Proof: For n = 1 n=1 , we find that a 1 = cos π 5 a_1 = \cos \frac \pi 5 and b 1 = sin π 5 b_1 = \sin \frac \pi 5 (see note below). Therefore the claim is true for n = 1 n=1 . Now assuming that the claim is true for n n , then:

{ a n + 1 = a n a 1 b n b 1 = cos n π 5 cos π 5 sin n π 5 sin π 5 = cos ( n + 1 ) π 5 b n + 1 = b n a 1 + a n b 1 = sin n π 5 cos π 5 + cos n π 5 sin π 5 = sin ( n + 1 ) π 5 \begin{cases} a_{n+1} = a_na_1 - b_nb_1 = \cos \frac {n\pi}5\cos \frac \pi 5 - \sin \frac {n\pi}5\sin \frac \pi 5 = \cos \frac {(n+1)\pi}5 \\ b_{n+1} = b_na_1 + a_nb_1 = \sin \frac {n\pi}5\cos \frac \pi 5 + \cos \frac {n\pi}5\sin \frac \pi 5 = \sin \frac {(n+1)\pi}5 \end{cases}

Therefore the claim is also true for n + 1 n+1 and hence true for all n 1 n \ge 1 . And we have a 2018 = cos 2018 π 5 = cos 8 π 5 0.309 a_{2018} = \cos \frac {2018\pi}5 = \cos \frac {8\pi}5 \approx \boxed{0.309} .


Note: Considering the following identity:

cos π 5 + cos 3 π 5 = 1 2 As cos ( π θ ) = cos θ cos π 5 cos 2 π 5 = 1 2 Also cos ( 2 x θ ) = 2 cos 2 θ 1 cos π 5 2 cos 2 π 5 + 1 = 1 2 2 cos 2 π 5 cos π 5 1 2 = 0 Solving the quadratic \begin{aligned} \cos \frac \pi 5 + \color{#3D99F6} \cos \frac {3\pi}5 & = \frac 12 & \small \color{#3D99F6} \text{As }\cos (\pi - \theta) = - \cos \theta \\ \cos \frac \pi 5 - \color{#3D99F6} \cos \frac {2\pi}5 & = \frac 12 & \small \color{#3D99F6} \text{Also }\cos (2x\theta) = 2\cos^2 \theta - 1 \\ \cos \frac \pi 5 - \color{#3D99F6} 2 \cos^2 \frac \pi 5 + 1 & = \frac 12 \\ 2 \cos^2 \frac \pi 5 - \cos \frac \pi 5 - \frac 12 & = 0 & \small \color{#3D99F6} \text{Solving the quadratic} \end{aligned}

cos π 5 = 1 + 5 4 sin π 5 = 1 ( 1 + 5 4 ) = 5 + 5 8 \begin{aligned} \implies \cos \frac \pi 5 & = \frac {1+\sqrt 5}4 \\ \implies \sin \frac \pi 5 & = \sqrt{1-\left(\frac {1+\sqrt 5}4\right)} = \sqrt{\frac {5+\sqrt 5}8} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...