Entanglement Projection

Which of the following correctly rewrites the state |\uparrow\rangle \otimes |\downarrow\rangle in the Bell basis?

1 2 ( Φ 1 + Φ 2 ) \frac{1}{\sqrt{2}} (\vert\Phi_1\rangle + \vert\Phi_2\rangle) 1 2 ( Φ 1 Φ 2 ) \frac{1}{\sqrt{2}} (\vert\Phi_1\rangle - \vert\Phi_2\rangle) 1 2 ( Φ 1 i Φ 2 ) \frac{1}{\sqrt{2}} (\vert\Phi_1\rangle - i\vert\Phi_2\rangle) 1 2 ( Φ 1 + i Φ 2 ) \frac{1}{\sqrt{2}} (\vert\Phi_1\rangle + i\vert\Phi_2\rangle)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt DeCross
May 10, 2016

Relevant wiki: Quantum Teleportation

The two relevant Bell states are:

Φ 1 = I σ 1 Φ 0 = 1 2 ( + ) Φ 2 = I σ 2 Φ 0 = i 2 ( ) \begin{aligned} |\Phi_1\rangle &= I \otimes \sigma_1 |\Phi_0\rangle =\frac{1}{\sqrt{2}} (|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle) \\ |\Phi_2\rangle &=I \otimes \sigma_2 |\Phi_0\rangle = \frac{i}{\sqrt{2}} (|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle) \end{aligned}

Verifying the answer:

1 2 ( Φ 1 i Φ 2 ) = 1 2 ( + ) + 1 2 ( ) = \begin{aligned} \frac{1}{\sqrt{2}} (|\Phi_1\rangle - i |\Phi_2\rangle) &= \frac{1}{2} (|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle) + \frac{1}{2} (|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle) \\ &= |\uparrow\rangle \otimes |\downarrow\rangle \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...