Envelope of Trajectories - 2

A particle of mass 1 k g 1 \ \mathrm{kg} is projected from the origin with speed u = 20 m / s u = 20 \ \mathrm{m/s} , at angle θ \theta to the horizontal. 0 θ 8 0 0^{\circ} \le \theta \ \le 80^{\circ}

In the range 15 x 25 15 \le x \le 25 , there is a force field which applies a force of 10 N 10 \ \mathrm{N} in the positive Y direction.

Compute the area A A bounded by the envelope of all trajectories in the given interval of θ \theta and the X axis. The motion of all trajectories is confined to the X-Y plane. Enter your answer as A \lfloor A \rfloor .

Note:

  • An ambient gravitational field acts along the negative Y direction throughout space. Acceleration due to gravity g = 10 m / s 2 g = 10 \ \mathrm{m/s^2} .

  • . \lfloor . \rfloor denotes the Floor function

  • Inspiration

  • This happens to be my 100th problem.


The answer is 717.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 29, 2021

The initial trajectory is y = x tan θ 1 80 x 2 sec 2 θ y \; =\; x\tan\theta - \tfrac{1}{80}x^2\sec^2\theta and, to begin with, we want to maximize y y as θ \theta varies, for 0 x 15 0 \le x \le 15 .

If 0 x 40 cot 8 0 0 \le x \le 40\cot80^\circ , then y y is maximized for θ = 8 0 \theta = 80^\circ , so the envelope has equation Y ( x ) = x tan 8 0 1 80 x 2 sec 2 8 0 0 x 40 cot 8 0 Y(x) \; = \; x\tan80^\circ - \tfrac{1}{80}x^2\sec^280^\circ \hspace{2cm} 0 \le x \le 40\cot80^\circ If 40 cot 8 0 x 15 40\cot80^\circ \le x \le 15 , then y y is maximized when tan θ = 40 x \tan\theta = \frac{40}{x} , and hence Y ( x ) = 20 1 80 x 2 40 cot 8 0 x 15 Y(x) \; = \; 20 - \tfrac{1}{80}x^2 \hspace{2cm} 40\cot80^\circ \le x \le 15 Since the initial trajectory has gradient tan θ 3 8 sec 2 θ \tan\theta - \tfrac38\sec^2\theta at x = 15 x=15 , in the region 15 x 25 15 \le x \le 25 the general trajectory is y = 15 tan θ 45 16 sec 2 θ + ( x 15 ) ( tan θ 3 8 sec 2 θ ) y \; =\; 15\tan\theta - \tfrac{45}{16}\sec^2\theta + (x - 15)(\tan\theta - \tfrac38\sec^2\theta) and this is maximized when tan θ = 8 x 3 ( 2 x 15 ) \tan\theta = \frac{8x}{3(2x-15)} , and so the envelope has equation Y ( x ) = 125 16 + 7 24 x + 75 2 x 15 15 x 25 Y(x) \; = \; \tfrac{125}{16} + \tfrac{7}{24}x + \frac{75}{2x-15} \hspace{2cm} 15 \le x \le 25 Finally, in the region x 25 x \ge 25 , the general trajectory is y = ( x 10 ) tan θ 1 80 ( x 10 ) 2 sec 2 θ + 10 ( tan θ 3 8 sec 2 θ ) y \; = \; (x - 10)\tan\theta - \tfrac{1}{80}(x - 10)^2\sec^2\theta + 10(\tan\theta - \tfrac38\sec^2\theta) and this is maximized when tan θ = 40 x x 2 20 x + 400 \tan\theta = \frac{40x}{x^2 - 20x + 400} , so the envelope has equation Y ( x ) = 20 x 2 x 2 20 x + 400 1 80 ( x 2 20 x + 400 ) x 25 Y(x) \; = \; \frac{20x^2}{x^2 - 20x + 400} - \tfrac{1}{80}(x^2 - 20x + 400) \hspace{2cm} x \ge 25 We deduce that Y ( x ) = 0 Y(x) = 0 when x = 30 + 10 5 x = 30 + 10\sqrt{5} , and so the complete envelope equation is Y ( x ) = { x tan 8 0 1 80 x 2 sec 2 8 0 0 x 40 cot 8 0 20 1 80 x 2 40 cot 8 0 x 15 125 16 + 7 24 x + 75 2 x 15 15 x 25 20 x 2 x 2 20 x + 400 1 80 ( x 2 20 x + 400 ) 25 x 30 + 10 5 Y(x) \; =\; \left\{ \begin{array}{lll} x\tan80^\circ - \tfrac{1}{80}x^2\sec^280^\circ & \hspace{2cm} & 0 \le x \le 40\cot80^\circ \\[1ex] 20 - \tfrac{1}{80}x^2 & & 40\cot80^\circ \le x \le 15 \\[1ex] \tfrac{125}{16} + \tfrac{7}{24}x + \frac{75}{2x-15} & & 15 \le x \le 25 \\[1ex] \frac{20x^2}{x^2 - 20x + 400} - \tfrac{1}{80}(x^2 - 20x + 400) & & 25 \le x \le 30 + 10\sqrt{5} \end{array}\right. The area A A under this curve can be calculated explicitly, so A = 25 24 [ 345 + 88 5 + 128 3 tan 1 ( 1 2 3 ) 128 3 tan 1 ( 2 + 5 3 ) + 36 ln 7 3 + 192 ln 400 192 ln 525 + 192 ln ( 3 + 5 ) 256 tan 1 0 ] = 25 24 [ 345 + 88 5 128 3 tan 1 ( 1 33 ( 7 15 6 3 ) ) + 36 ln 7 3 + 192 ln ( 16 21 ( 3 + 5 ) ) 256 tan 1 0 ] 717.5331561 \begin{aligned} A & =\; \frac{25}{24} \left[\begin{array}{l}345 + 88 \sqrt{5} + 128 \sqrt{3} \tan^{-1}\big(\tfrac12\sqrt{3}\big) - 128 \sqrt{3} \tan^{-1}\left(\frac{2 + \sqrt{5}}{\sqrt{3}}\right) \\ + 36 \ln\tfrac{7}{3} + 192 \ln400 - 192\ln525 + 192\ln\big(3 + \sqrt{5}\big) - 256 \tan10^\circ \end{array}\right] \\[2ex] & = \; \frac{25}{24}\left[345 + 88\sqrt{5} - 128\sqrt{3}\tan^{-1}\left(\tfrac{1}{33}(7\sqrt{15} -6\sqrt{3})\right) + 36\ln\tfrac73 + 192\ln\left(\tfrac{16}{21}(3 + \sqrt{5})\right) - 256\tan10^\circ\right] \\ & \approx \; 717.5331561 \end{aligned} and hence A = 717 \lfloor A \rfloor = \boxed{717} .

Thank you for the insightful solution.

Karan Chatrath - 2 months, 2 weeks ago
Steven Chase
Mar 27, 2021

This was a fun one. Congrats on the 100 problems. I did a triple sweep, so the computational complexity was huge.

1) Sweep a "measurement x value" ( x m ) (x_m) over a range in discrete steps.

2) For each x m x_m , sweep the launch angle θ \theta over the allowable range in discrete steps.

3) For each θ \theta , run a time simulation to see the y y value when x = x m x = x_m . If x x never reaches x m x_m , that trajectory's y y value counts as zero. Store the maximum y y value ( y m a x ) (y_{max}) for each x m x_m .

4) The incremental area d A = y m a x d x m dA = y_{max} \, d x_m

In my highest resolution sweep, d x m = 0.1 d x_m = 0.1 , d θ = 0. 1 d \theta = 0.1 ^\circ , and d t = 1 0 4 dt = 10^{-4}

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import math

m = 1.0
u = 20.0
g = 10.0

deg = math.pi/180.0

####################################

dxm = 1.0
dtheta = 1.0*deg
dt = 10.0**(-4.0)

dxm = dxm/10.0
dtheta = dtheta/10.0
dt = dt/1.0

####################################

A = 0.0

xm = 0.0

while xm <= 55.0:

    ymax = 0.0

    theta = 0.0

    while theta <= 80.0*deg:

        t = 0.0

        x = 0.0
        y = 0.0

        xd = u*math.cos(theta)
        yd = u*math.sin(theta)

        xdd = 0.0
        ydd = -g

        while (x <= xm) and (y >= 0.0):

            x = x + xd*dt
            y = y + yd*dt

            xd = xd + xdd*dt
            yd = yd + ydd*dt

            if (x >= 15.0) and (x <= 25.0):
                F = 10.0
            else:
                F = 0.0

            Fx = 0.0
            Fy = F - m*g

            xdd = Fx/m
            ydd = Fy/m

            t = t + dt

        if y > ymax:
            ymax = y

        theta = theta + dtheta

    dA = ymax*dxm
    A = A + dA

    print xm,ymax

    xm = xm + dxm

####################################

print ""
print ""
print dxm
print dtheta
print dt
print ""
print A

########################

#1.0
#0.0174532925199
#0.0001

#712.168927954

########################

#0.5
#0.00872664625997
#5e-05

#717.386333522


########################

#0.2
#0.00349065850399
#5e-05

#716.562647831

########################


#0.1
#0.00174532925199
#0.0001

#717.565745138

Thanks for posting. This was a hard one to solve for me as well. I did so by evaluating the closed-form trajectory y y as a function of x x and the angle of projection θ \theta . Once, I did that, the numerical complexity became manageable as the time advancing Explicit Euler scheme was no longer within the loop. I also see a lot of variability in your results. How did you ensure that your result has converged given the numerical complexity? It must have taken a lot of time.

Karan Chatrath - 2 months, 2 weeks ago

Log in to reply

I couldn't get the convergence I wanted, because it was too expensive to run the cases. All I could do was get to within an integer or two and then rely on my three tries. Luckily, I got it on the first try.

Steven Chase - 2 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...