Equal Lengths

Geometry Level 5

As shown, D A B = 1 5 \angle DAB=15^\circ , B A C = 4 5 \angle BAC =45^\circ and A B = 10 AB=10 . Given that B B is the mid-point of straight segment D C DC and the D B = s DB=s . Find the value of 100 s \lfloor 100s\rfloor .


The answer is 715.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Joshua Chin
May 24, 2016

Relevant wiki: Solving Triangles - Problem Solving - Hard

Refer to the figure above. Extend C A \overline { CA } to A A' so that A A is the midpoint of C A \overline {CA'} . Also, B B is the midpoint of D C \overline {DC} so we can use midpoint theorem and thus, A D = 2 10 = 20 A'D=2\cdot 10=20 . From midpoint theorem, A B \overline { AB } // A D \overline {A'D} . We can do some angle chasing and label the angles in Δ D A A \Delta DA'A

In Δ D A A \Delta DA'A , we can use sine rule and 20 sin 12 0 = A A sin 1 5 = D A sin 4 5 \frac { 20 }{ \sin { 120^\circ } } =\frac { A'A }{ \sin { 15^\circ } } =\frac { DA }{ \sin { 45^\circ } } .

A A = 20 sin 1 5 sin 12 0 = 10 ( 6 2 ) 3 A'A=\frac{ 20 \sin{15^\circ}} {\sin{120^\circ}} = \frac { 10(\sqrt { 6 } -\sqrt { 2 } ) }{ \sqrt { 3 } }

As A A is the midpoint of A C \overline { A'C} , A C = A A = 10 ( 6 2 ) 3 AC=A'A=\frac { 10(\sqrt { 6 } -\sqrt { 2 } ) }{ \sqrt { 3 } } .

Also from sine rule in Δ D A A \Delta DA'A , D A = 20 sin 4 5 sin 12 0 = 20 6 3 DA=\frac { 20 \sin{45^\circ}}{\sin{120^\circ}}=\frac{20 \sqrt {6}}{3}

Now apply cosine rule on Δ D A C \Delta DAC , D C 2 = ( 20 6 3 ) 2 + ( 10 ( 6 2 ) 3 ) 2 2 ( 20 6 3 ) ( 10 ( 6 2 3 ) cos 6 0 { DC }^{ 2 }={ (\frac { 20\sqrt { 6 } }{ 3 } ) }^{ 2 }+{ (\frac { 10(\sqrt { 6 } -\sqrt { 2 } ) }{ \sqrt { 3 } } ) }^{ 2 }-2(\frac { 20\sqrt { 6 } }{ 3 } )(\frac { 10(\sqrt { 6 } -\sqrt { 2 } }{ \sqrt { 3 } } )\cos { 60^\circ }

D C 2 = 6000 2400 3 9 {DC}^{2}=\frac{6000-2400\sqrt{3}}{9}

D C = ± 6000 2400 3 3 DC=\pm \frac { \sqrt { 6000-2400\sqrt { 3 } } }{ 3 } (reject D C = 6000 2400 3 3 DC=-\frac { \sqrt { 6000-2400\sqrt { 3 } } }{ 3 } )

D B = 6000 2400 3 6 DB= \frac { \sqrt { 6000-2400\sqrt { 3 } } }{ 6 }

100 D B = 50 6000 2400 3 3 715.5 100DB=\frac { 50\sqrt { 6000-2400\sqrt { 3 } } }{ 3 } \approx 715.5

100 s = 715 \Longrightarrow \lfloor 100s\rfloor=715

Moderator note:

Nice construction of the point A A' . What motivated it?

Note that once you found A D , A B , A C AD, AB, AC , you can use Stewart's Theorem (or Apollonius Theorem) to conclude that

A D 2 + A C 2 = 2 ( A B 2 + B D 2 ) AD^2 + AC^2 = 2( AB^2 + BD^2)

Of course, this is equivalent to the cosine rule approach that you used.

Amazing solution +1 !!

Rishabh Tiwari - 5 years ago

Very nicely done!

Siva Bathula - 5 years ago

we can drow it and put ab =1 and >>>>>> >>>< make your rull

Patience Patience - 4 years, 11 months ago

What a get up solution

Hemant Mittal - 5 years ago
Prakhar Bindal
May 25, 2016

Simply We Use sine rule in triangle ADB And ABC.

Call Angle ADC = x and Angle ACD = 120-x (From angle sum property)

Also Let BD= BC = y

y/sin(15) = AB/sinx

y/sin45 = AB(sin(120-x)

Divide them and solving we get value of tanx . then find sinx

and substitute in 1st equation to get y

Exactly the method I used.+1!

Rishabh Tiwari - 5 years ago

Log in to reply

That's also i done...to solve this question bro

VIneEt PaHurKar - 5 years ago

I am again and again getting DB as 6.14 . prakhar bindal from your method also .

Chirayu Bhardwaj - 5 years ago

Log in to reply

Please recheck your calculations as i got correct

Prakhar Bindal - 5 years ago
Ahmad Saad
May 25, 2016

Moderator note:

Interesting approach! What motivated looking at the circumcircle?

s sin 4 5 = 10 sin B C A B C A = sin 1 ( 10 sin 4 5 s ) 2 sin 6 0 = A D s 10 sin 4 5 A D = 20 3 2 s = A D 2 + 100 2 × A D × 10 cos 1 5 s 7.155 Hence, 100 s = 715 \frac{s}{\sin{45^\circ}}=\frac{10}{\sin{\angle BCA}}\\\angle BCA=\sin^{-1}\left(\frac{10\sin45^\circ}{s}\right)\\\frac{2}{\sin60^\circ}=\frac{AD\cdot s}{10\sin45^\circ} \\AD=\frac{20\sqrt{3}}{\sqrt{2}}\\s=\sqrt{AD^2+100-2\times AD\times10\cos15^\circ}\\s\approx7.155\\\text{Hence, }\lfloor100s\rfloor=715

Apply sine law on A C B \triangle ACB .

10 sin C = s sin 45 \dfrac{10}{\sin C}=\dfrac{s}{\sin 45} \implies sin C = 10 sin 45 s \sin C = \dfrac{10 \sin 45}{s}

Apply sine law on A C D \triangle ACD .

A D sin C = 2 s sin 60 \dfrac{AD}{\sin C}=\dfrac{2s}{\sin 60} \implies sin C = A D sin 60 2 s \sin C=\dfrac{AD \sin 60}{2s}


sin C = sin C \sin C = \sin C

10 sin 45 s = A D sin 60 2 s \dfrac{10 \sin 45}{s}=\dfrac{AD \sin 60}{2s} \implies A D = 20 sin 45 sin 60 AD=\dfrac{20 \sin 45}{\sin 60}


Apply cosine law on A B D \triangle ABD .

s 2 = A D 2 + 1 0 2 2 ( A D ) ( 10 ) ( cos 15 ) = ( 20 sin 45 sin 60 ) 2 + 100 2 ( 20 sin 45 sin 60 ) ( 10 ) ( cos 15 ) 51.19661283 s^2=AD^2+10^2-2(AD)(10)(\cos 15)=\left(\dfrac{20 \sin 45}{\sin 60}\right)^2+100-2\left(\dfrac{20 \sin 45}{\sin 60}\right)(10)(\cos 15)\approx 51.19661283


s = 51.19661283 7.155 s=\sqrt{51.19661283}\approx 7.155


100 s = 100 ( 7.155 ) = 715 \lfloor 100s \rfloor = 100(7.155)=\boxed{715}

Atomsky Jahid
Jun 3, 2016

Used law of sines for traingles ADB and ABC first. And, then substituted one equation into another to get the value of 's'.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...