Equal roots..

Algebra Level 2

f i n d t h e v a l u e s o f k f o r w h i c h find\quad the\quad values\quad of\quad k\quad for\quad which

( k + 4 ) x 2 + ( k + 1 ) x = 1 (k+4){ x }^{ 2 }\quad +\quad (k+1)x\quad =\quad -1

h a s e q u a l r o o t s has\quad equal\quad roots

-5,3 5,-3 5,3 -5,-3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Azeem King
Apr 30, 2014

D=0:....... so, b^2(b square) - 4ac=0...... b=k+1; a=k+4; c=1;......... on getting the answer from this equation factorise which gives the values for k= 5, -3.

Krishna Ramesh
Apr 30, 2014

C l e a r l y , s i n c e t h e e q u a t i o n h a s e q u a l r o o t s , D ( D i s c r i m i n a n t ) = 0 Clearly,\quad since\quad the\quad equation\quad has\quad equal\quad roots,\quad D(Discriminant)=0

S o , ( k + 1 ) 2 4 ( k + 4 ) ( 1 ) = 0 So,\quad { (k+1) }^{ 2 }-4(k+4)(1)=0

k 2 + 1 + 2 k 4 k 16 = 0 \Longrightarrow { \quad }{ k }^{ 2 }+1+2k-4k-16=0

k 2 2 k 15 = 0 \Longrightarrow \quad { k }^{ 2 }-2k-15=0

( k + 3 ) ( k 5 ) = 0 \Longrightarrow \quad (k+3)(k-5)=0

w h i c h g i v e s u s k = 5 o r k = 3 which\quad gives\quad us\quad k=5\quad or\quad k=-3

My lucky to get that answer, :v

Faiz An - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...