Equal sins

Geometry Level 4

4 sin α 2 + 3 sin β 2 + 2 sin γ 2 + sin δ 2 4\sin \frac{\alpha}{2}+3\sin \frac{\beta}{2}+2\sin \frac{\gamma}{2}+\sin \frac{\delta}{2}

Let α \alpha , β \beta , γ \gamma , and δ \delta be some small positive angles in ascending order of magnitude which has their sines equal to a positive quantity k k . Find the value of the above expression. ​

2 k 2k 2 1 k 2\sqrt{1-k} 2 1 + k 2\sqrt{1+k} 2 k 2\sqrt{k}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 23, 2016

It is given that α < β < γ < δ \alpha < \beta < \gamma < \delta and sin α = sin β = sin γ = sin δ = k \sin \alpha = \sin \beta = \sin \gamma = \sin \delta = k . β = π α \implies \beta = \pi - \alpha , γ = 2 π + α \gamma = 2\pi + \alpha and δ = 3 π α \delta = 3\pi - \alpha . Therefore, we have:

S = 4 sin α 2 + 3 sin β 2 + 2 sin γ 2 + sin δ 2 = 4 sin α 2 + 3 sin ( π 2 α 2 ) + 2 sin ( π + α 2 ) + sin ( 3 π 2 α 2 ) = 4 sin α 2 + 3 cos α 2 2 sin α 2 cos α 2 = 2 sin α 2 + 2 cos α 2 \begin{aligned} S & = 4 \sin \frac \alpha 2 + 3 \sin \frac \beta 2 + 2 \sin \frac \gamma 2 + \sin \frac \delta 2 \\ & = 4 \sin \frac \alpha 2 + 3 \sin \left( \frac \pi 2 - \frac \alpha 2 \right) + 2 \sin \left(\pi + \frac \alpha 2 \right) + \sin \left( \frac {3\pi} 2 - \frac \alpha 2 \right) \\ & = 4 \sin \frac \alpha 2 + 3 \cos \frac \alpha 2 - 2 \sin \frac \alpha 2 - \cos \frac \alpha 2 \\ & = 2 \sin \frac \alpha 2 + 2 \cos \frac \alpha 2 \end{aligned}

From Weierstrass or tangent half-angle substitution, we have sin α = 2 t 1 + t 2 = k \sin \alpha = \frac {2t}{1+t^2} = k , where t = tan α 2 t = \tan \frac \alpha 2 . Also that sin α 2 = t 1 + t 2 \sin \frac \alpha 2 = \frac t{\sqrt{1+t^2}} and cos α 2 = 1 1 + t 2 \cos \frac \alpha 2 = \frac 1{\sqrt{1+t^2}} . Then, we have:

S = 2 sin α 2 + 2 cos α 2 = 2 ( t 1 + t 2 + 1 1 + t 2 ) = 2 ( 1 + t 1 + t 2 ) = 2 ( 1 + t ) 2 1 + t 2 = 2 1 + 2 t + t 2 1 + t 2 = 2 1 + 2 t 1 + t 2 = 2 1 + sin α = 2 1 + k \begin{aligned} S & = 2 \sin \frac \alpha 2 + 2 \cos \frac \alpha 2 \\ & = 2 \left( \frac t{\sqrt{1+t^2}} + \frac 1{\sqrt{1+t^2}} \right) \\ & = 2 \left( \frac {1+t}{\sqrt{1+t^2}} \right) = 2 \sqrt{\frac {(1+t)^2}{1+t^2}} \\ & = 2 \sqrt{\frac {1+2t + t^2}{1+t^2}} = 2 \sqrt{1 + \color{#3D99F6}{\frac {2t}{1+t^2}}} \\ & = 2\sqrt{1+\color{#3D99F6}{\sin \alpha}} = \boxed{2\sqrt{1+\color{#3D99F6}{k}}} \end{aligned}

You can directly do this,

2 ( sin α 2 + cos α 2 ) = 2 1 + sin α = 2 1 + k ( sin α 2 + cos α 2 ) 2 = 1 + sin α 2\left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)=2\sqrt{1+\sin \alpha}=2\sqrt{1+k} \\ \Rightarrow \left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)^2=1+\sin \alpha

Akshat Sharda - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...