Equal to what?

Algebra Level 2

( 1 1 y ) ( 1 1 y + 1 ) ( 1 1 y + 2 ) ( 1 1 y + y ) = ? \large \left(1 - \frac{1}{y}\right)\left(1 - \frac{1}{y+1}\right) \left(1 - \frac{1}{y+2}\right) \cdots \left(1 - \frac{1}{y+y}\right)= \ ?

1 2 y \frac{1}{2y} 2 y y 1 \frac{2y}{y-1} 1 y \frac{1}{y} y 1 2 y \frac{y-1}{2y}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

= ( 1 1 y ) ( 1 1 y + 1 ) ( 1 1 y + 2 ) . . . ( 1 1 y + y ) = y 1 y y + 1 1 y + 1 y + 2 1 y + 2 . . . y + y 1 y + y = y 1 y y y + 1 y + 1 y + 2 . . . 2 y 1 2 y = y 1 2 y \large =\left( 1-\frac { 1 }{ y } \right) \left( 1-\frac { 1 }{ y+1 } \right) \left( 1-\frac { 1 }{ y+2 } \right) ...\left( 1-\frac { 1 }{ y+y } \right) \\ \large =\frac { y-1 }{ y } \cdot \frac { y+1-1 }{ y+1 } \cdot \frac { y+2-1 }{ y+2 } \cdot ...\cdot \frac { y+y-1 }{ y+y } \\ \large =\frac { y-1 }{ y } \cdot \frac { y }{ y+1 } \cdot \frac { y+1 }{ y+2 } \cdot ...\cdot \frac { 2y-1 }{ 2y } \\ \large=\frac { y-1 }{ 2y }

How did you get the 4th line of your solution?

Ojasee Duble - 3 years, 9 months ago

Log in to reply

See the numerator and the denominator looking at the pattern.

Wildan Bagus Wicaksono - 3 years, 9 months ago

Log in to reply

Oh yeah...Ok...Got it!! Thanks :)

Ojasee Duble - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...