Equality of square roots and absolute value

Algebra Level 3

Non-zero real numbers a a , b b , and c c are such that

1 a 2 + 1 b 2 + 1 c 2 = 1 a + 1 b + 1 c \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}} = \left| \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right|

Find a + b + c a+b+c .

If you think there is no solution, type 1 -1 . If you think there is more than one solution, type the sum of all solutions.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tin Le
Aug 5, 2020

1 a 2 + 1 b 2 + 1 c 2 = 1 a + 1 b + 1 c \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}} = |\frac{1}{a}+\frac{1}{b}+\frac{1}{c} |

Since both sides of the equation are always positive for every non-zero real a , b , c a,b,c , we have:

( 1 a 2 + 1 b 2 + 1 c 2 ) 2 = ( 1 a + 1 b + 1 c ) 2 \Rightarrow (\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}})^2 = (|\frac{1}{a}+\frac{1}{b}+\frac{1}{c} |)^2

1 a 2 + 1 b 2 + 1 c 2 = ( 1 a + 1 b + 1 c ) 2 = 1 a 2 + 1 b 2 + 1 c 2 + 2 ( 1 a b + 1 b c + 1 c a ) \Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} = (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} + 2( \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})

2 ( 1 a b + 1 b c + 1 c a ) = 0 1 a b + 1 b c + 1 c a = 0 \Leftrightarrow 2( \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}) = 0 \Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca} = 0

a + b + c a b c = 0 \Leftrightarrow \frac{a+b+c}{abc} = 0

a + b + c = 0 \Rightarrow a+b+c=\boxed{0}

Tom Engelsman
Nov 25, 2020

For all nonzero a , b , c a,b,c , we have:

1 a + 1 b + 1 c = b c + a c + a b a b c = ( b c + a c + a b ) 2 a 2 b 2 c 2 = a 2 b 2 + a 2 c 2 + b 2 c 2 + 2 a b c ( a + b + c ) a 2 b 2 c 2 = 1 a 2 + 1 b 2 + 1 c 2 + 2 ( a + b + c a b c ) a + b + c = 0 . |\frac{1}{a} + \frac{1}{b} + \frac{1}{c}| = |\frac{bc+ac+ab}{abc}| = \sqrt{\frac{(bc+ac+ab)^2}{a^2b^2c^2}} = \sqrt{\frac{a^2b^2 + a^2c^2 +b^2c^2 + 2abc(a+b+c)}{a^2b^2c^2}} = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 2(\frac{a+b+c}{abc})} \Rightarrow \boxed{a+b+c=0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...